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Abstract

We review current progress with respect to ultrafast, atomic-scale resolu-
tion X-ray scattering studies of materials. In the last decade, advances in
sources and techniques have opened up new possibilities for probing the
dynamics of how materials change in situ and in real time. These develop-
ments have enabled direct measurements of the first primary steps in how
complex/functional materials transform and the flow of energy between dif-
ferent degrees of freedom. Unique insight into the mechanisms underlying
how materials function is obtained through these studies. An outlook on
future developments and new opportunities is also presented.
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FEL: free-electron
laser

1. INTRODUCTION

Atomic-scale motions in materials occur across a vast range of timescales and length scales. Our
understanding of these processes is shaped by our ability to probe them, and over the past century,
a range of approaches have been adapted to try to visualize how atoms are moving. For example,
in the frequency domain, optical techniques such as infrared or Raman spectroscopy are sensitive
to vibrational degrees of freedom and can extract important structural information. Over the last
several decades, significant efforts have been made to go beyond these more indirect approaches
and to develop means to reconstruct the structure of materials at atomic-scale resolution as they are
evolving. This means extending basic techniques such as X-ray crystallography, as often applied to
measure frozen-in structures of biologically relevant molecules, to extract the intermediate states
and mechanistic pathways that the molecules pass through as they transform (i.e., not just reactant
and product states) (1). In the realm of materials science and solid-state physics on which this review
is focused, direct information concerning how atoms are moving and how unit cells are deforming
and reconfiguring can be obtained through these approaches, despite the fact that the timescale
for these dynamics can be as fast as a few tens of femtoseconds (10−15 s), comparable to the period
of the highest-frequency optical phonons. For example, the original fruit fly of femtosecond X-ray
experiments concerned the study of bismuth crystals, where time-dependent measurements of the
X-ray structure factor enable direct measurement of the unit cell deformations associated with the
A1g phonon mode and the Peierls distorted structure (2, 3). Since these early days, sources have
improved by many orders of magnitude in brightness (4), and the range of materials systems that
can be studied and the information that may be gleaned have been extended to encompass a vastly
larger phase space.

This review summarizes the current status of the field, covering some of the pioneering ex-
periments and the new understanding they have enabled concerning materials functionality. In
so doing, we also provide a detailed outlook and summary of future directions as well as areas
in which femtosecond scattering techniques may be significantly impactful within the broad field
of materials science. We focus on experiments using X-ray scattering approaches only, leaving
out approaches based on X-ray spectroscopy, electron diffraction, and so forth whose inclusion
would make this review intractable under current length limits. Furthermore, this review is largely
focused on the first experiments enabled by hard-X-ray free-electron lasers (FELs), which are rev-
olutionizing this field, although a brief historical perspective is provided, and many of the early
experiments making use of other sources are briefly discussed. We focus further on examples in
which the atoms are moving. This focus neglects a range of powerful techniques and experiments
probing electronic or magnetic degrees of freedom.

2. OVERVIEW OF SOURCES AND TECHNIQUES

Because most X-ray detectors are not capable of intrinsically resolving subpicosecond timescales,
the vast majority of femtosecond time-resolved measurements are performed in a pump-probe
scheme, which we briefly describe here in a general way. The pump pulse here is some kind of
perturbation to a material that initiates some particular dynamics that are under investigation. The
probe is in this case a short, <100-fs-duration X-ray pulse that scatters from the material over a
time interval that is short compared with the timescale of the changes in the structure. Both the
pump and probe pulses are synchronized in time up to a controllable delay, although significant
timing jitter often requires shot-by-shot determination of the relative delay and postprocessing to
achieve the highest resolution (5, 6) (see sidebar titled Shot-by-Shot Timing Measurements). The
scattered intensity from the probe pulse is measured, giving information about the instantaneous
structure of the material at that time. This is done repeatedly both to accumulate statistics and
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Angular divergence:
the spread of angles
(both vertical and
horizontal) in a
propagating beam

SHOT-BY-SHOT TIMING MEASUREMENTS

Because pump and probe pulses are typically generated by independent sources at X-ray FELs, there is often
significant timing jitter/fluctuations (of the order of hundreds of femtoseconds). In this situation, auxiliary diagnostic
experiments are often used to measure precisely the timing difference between particular pairs of pulses, which allows
for postsorting data by actual arrival time at the experiment so that the overall time resolution of the experiment is
uncompromised. In these auxiliary experiments, the roles of pump and probe are often reversed relative to the main
experiment. A frequently encountered case is one in which the arrival time of the X-ray beam must be compared
with that of a conventional femtosecond laser system that operates in or near the visible part of the spectrum.
One popular solution to this problem is to use a small portion of the X-ray pulse to transiently change the optical
properties of a thin material. These changes are measured by the transmission or reflection of a spectrally chirped
optical pulse derived from a split-off portion of the conventional laser system. Here chirped means simply that the
pulse is stretched in time so that the arrival time of the pulse on the thin material varies over the fairly broad set of
wavelengths that compose the femtosecond laser pulse. A spectrograph set to measure the pulse after interaction
with the thin material can then probe the time-dependent reflectivity over a substantial temporal range in a single
shot (6, 7). As an alternative to using chirped pulses, a similar outcome can be achieved using a cross-beam geometry
(5, 8, 9). Shot-by-shot diagnostics are also used to correct for other types of uncontrolled fluctuations, most often
related to the spectrum, intensity, and pointing of the beam.

to allow for variation in the timing between the two pulses. Between pairs of pulses, either the
material is assumed to relax back to its initial state, or it is replaced with an effectively identical
system. By making repeated measurements of the scattering from the probe pulses for various
time delays, it is possible to construct a time-dependent description of how the X-ray scattering
response changes with respect to the pump pulse.

The history of femtosecond X-ray pump-probe measurements has been driven largely by the
availability of short-pulse X-ray sources with sufficiently high flux and short wavelengths to make
such experiments feasible (10, pp. 371–422). One type of source that found early use relies on
X-ray emission from laser-generated plasmas to create short bursts of X-rays with a wavelength
determined by the strong emission lines of the material used to create the plasma (11–13). These
sources can have a relatively short pulse duration and can generate many X-ray photons in one
burst. The resulting X-rays, however, have a very large angular divergence, which sometimes
poses a challenge to scattering measurements, in which precise knowledge of the momentum of
the incoming X-rays is important. This difficulty can be partly overcome by optimizing the overall
efficiency of X-ray generation. Alternatively, this divergence can be used to measure a broad range
of scattering angles at the same time (14), and indeed this kind of source remains in active use
(15, 16).

At the same time as when the first plasma sources became available, research groups began to
exploit the bunched time structure of X-rays emitted from synchrotrons as well as ultrafast streak
camera detectors (17) to perform time-resolved X-ray scattering experiments with picosecond
resolution (18–20). These early efforts have now been extended at a number of synchrotrons to
pump-probe measurements with much higher repetition rates, making use of the intrinsic high
repetition rate of electron bunches in storage rings (21–23). The advent of the electron beam
slicing technique (see sidebar titled Electron Beam Slicing) (24, 25) enabled truly femtosecond
pump-probe measurements at synchrotrons by effectively reducing the normally >100-ps duration
of the pulses to >100 fs, at the cost of a proportional amount of X-ray flux. After the technique’s
first demonstration at the Advanced Light Source in Berkeley, California, this approach was
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ELECTRON BEAM SLICING

Performing pump-probe experiments with subpicosecond resolution at synchrotron light sources is normally dif-
ficult because stable operation of the electron storage ring requires fairly long electron bunches, typically on the
order of 100 ps in duration for normal operation at most facilities. Electron beam slicing, a method first proposed by
Zholents & Zolotorev (24) and demonstrated by Schoenlein et al. (25), uses an intense femtosecond near-infrared
laser to modulate the energy of a short slice of electrons in a synchrotron storage ring. These modulated electrons,
which have a temporal duration that matches that of the near-infrared laser, are then separated from the other
electrons by magnetic fields and are used in a bending magnet or undulator to create 50–100-fs-duration X-ray
pulses.

implemented at several different synchrotron sources (26–28). Parallel recent efforts have focused
on shortening X-ray pulses at synchrotrons through manipulation of the trajectories of electrons
within an electron bunch such that the longitudinal bunch length of the emitting electrons is
directly shortened, termed low-α modes (21, 29, 30). This reduction in pulse duration is often
obtained at the expense of a significant loss in bunch current.

Despite the availability of plasma and slicing sources, the low per-pulse flux and peak bril-
liance from such sources pose a strong limitation on the range of measurements that are feasi-
ble. Accelerator-based sources optimized for short-pulse generation can provide femtosecond-
duration pulses with peak brilliances that are many orders of magnitude higher. Freed of the
requirement to stably store electrons in a ring, linear accelerators can generate subpicosecond-
duration electron pulses with fairly high current. This was used at the Subpicosecond Pulse Source
(SPPS) at the SLAC National Accelerator Laboratory in Menlo Park, California, to generate X-
rays as in a synchrotron. Such a linear accelerator source was used to perform X-ray scattering
measurements with much higher statistics than for previous sources (31). Soon afterward, the Linac
Coherent Light Source (LCLS), the first hard-X-ray FEL, was commissioned, also at SLAC (32).
FEL sources use bright relativistic electron bunches from an accelerator as the gain medium in
a lasing process, producing orders-of-magnitude-higher X-ray intensities in femtosecond pulse
durations and with full transverse coherence. The resulting increase in brightness has enabled a
wide variety of time-resolved X-ray scattering experiments that were previously impossible. Soon
afterward, the SACLA FEL in Japan offered similar capabilities (33), and several other hard-
X-ray FEL sources are currently under commissioning work in Germany (34), Korea (35), and
Switzerland (36).

3. COHERENT STRUCTURAL DYNAMICS

Much of the early and ongoing fundamental work on femtosecond time-resolved X-ray scattering
has focused on temporal coherences in structural dynamics induced by electromagnetic radia-
tion. Such coherences are uniquely observable by time-resolved techniques, and the use of X-ray
scattering offers quantitative information on the magnitude of such coherences and thus a mea-
surement of certain types of couplings. In addition, the high momentum of X-ray radiation can
in some cases give useful information about the wave vector of the coherences.

Here we consider two types of coherences that have been investigated using femtosecond X-
ray scattering. The first are so-called coherent states, which are essentially first-order coherences
in some type of displacement field. The second type are higher-order coherences, for example,
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COHERENT STATE

A coherent state (37) is a solution of the quantum harmonic oscillator in which the uncertainties of the displacement
and momentum are constant in time and equal to their values in the ground state. In a coherent state, the expectation
values of the displacement and momentum coordinates change periodically in time with a phase difference of
90 degrees. In a sense, coherent states are the most classical-like solutions to the quantum harmonic oscillator
problem, in that the dynamics of the expectation values of the coordinates follow precisely those of the classical
solutions.

squeezed states, including those involving correlations of two or more different normal modes of
the structure.

3.1. Coherent States in Condensed Matter

In the context of condensed matter systems, the term coherent excitation is broadly used to
describe a time-dependent state similar to a coherent state of some quantized field, in analogy
to the coherent states of quantum optics discussed by Glauber (37) (see sidebar titled Coherent
State). Although a strict analogy to the coherence discussed by Glauber would require time-
dependent oscillations of the relevant field variable with a minimum uncertainty, in practice,
coherent excitation is often used to describe any state of a field variable in which the expectation
value oscillates with a nonzero amplitude and with a definite phase with respect to some reference
time. The term is meant to distinguish such motions from the incoherent dynamics associated
with thermalized systems, in which the expectation value of the field is zero (but the field variance
is nonzero).

To put this discussion on a less abstract footing, consider the specific case of the field of atomic
displacements in a crystal in which the instantaneous position of every atom is represented by a
displacement vector u j (R) from its equilibrium position, where R is a vector describing a specific
unit cell and j is an index running over the n basis atoms. Expressed in terms of the different
vibrational modes Qks of the crystal,

u j (R) = 1√
N

∑

ks

Qks ε
j
ks e

ik·R + h.c., 1.

where ε
j
ks are the eigenvectors for the 3n phonon branches s with wavevector k belonging to the N

allowed values in the first Brillouin zone (corresponding to the total number of unit cells) and h.c.
denotes the hermitian conjugate. In this context, a coherent phonon is a state of the displacement
field in which 〈Qks〉 is nonzero and time dependent, oscillating with a frequency ωks with a phase
well defined with respect to an externally defined reference. Here the angle brackets could refer
to either the quantum mechanical expectation value or a classical ensemble average.

This external reference is typically tied to some kind of sudden excitation of the system. For
example, rapid heating of a material with a femtosecond laser pulse generates a strain wave
that propagates away from interfaces, which is equivalent to a spectrum of coherent acoustic
modes with a bandwidth limited by the speed of sound across the penetration depth (38). The
resulting dynamics were resolved in the early days of time-resolved X-ray diffraction measure-
ments as time-dependent modulations of the intensity of diffraction in the tails of Bragg lat-
tice reflections (19, 39, 40), a kind of inelastic scattering discussed further below. Depending
on the system, impulsive optical excitation might also produce phonons via a more direct cou-
pling of electronic states to acoustic modes via deformation potential coupling (see sidebar titled
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DEFORMATION POTENTIAL COUPLING

The deformation potential coupling is a type of electron-phonon coupling that arises from the dependence of
electronic state energies on lattice strain. In short, if the energy of a particular electronic state changes when
the lattice is compressed along a particular direction, this electronic state will couple to long-wavelength acoustic
vibrational modes that compress the lattice along this direction. This term is normally used only to describe coupling
between electronic states and longitudinal acoustic modes.

Deformation Potential Coupling). A careful analysis of the dynamics can measure the strength of
both contributions (19, 41, 42).

In systems with a nontrivial unit cell basis, sudden excitation of electronic states with a
femtosecond laser pulse can lead to the creation of coherent phonons in the optical branches
via a similar electron-phonon coupling term in the system Hamiltonian (43–46). As is the case
with acoustic phonons generated by near-optical laser excitation, momentum conservation
conditions restrict the population of coherent phonons to those with wavelengths comparable
to or longer than the absorption depth of the exciting radiation. Because these depths are usually
long compared to the unit cell dimensions, these phonons are limited to a region very close to the
center of the Brillouin zone [a notable exception is in the presence of disorder (46, 47)]. Because
the dispersion of the optical branches is very small in this region, we can typically approximate the
optical phonons thus generated as essentially a set of zone-center modes characterized by oscil-
lating 〈Q0r (t)〉, where r runs over the subset of optical branches that are excited. These dynamics
were seen in early time-resolved X-ray diffraction measurements as time-dependent oscillations
of the intensity of particular diffraction peaks that have a structure factor sensitive to these modes,
allowing for quantitative measurement of the dynamics and the underlying coupling driving the
motion (2, 3, 48, 49). Typically, these are fully symmetric modes (A1g or A1 modes) that are
relatively easy to excite via so-called displacive excitation mechanisms [displacive excitation of co-
herent phonons (DECPs)] (see sidebar titled Displacive Excitation) (43), although low-amplitude
coherent phonons of lower-symmetry modes excited by a more impulsive mechanism have also
been seen in X-ray diffraction (50). The generation mechanism of coherent phonons of different
symmetries and their relationship to Raman scattering and DECPs are discussed in Reference 51.

All the foregoing examples have been experiments in which electronic excitation of a material
drives structural dynamics via electron-phonon coupling. An alternative method for generating
large populations of coherent excitations in electronically gapped materials is to couple in intense
pulses of electromagnetic radiation with a center frequency close to that of a resonance, provided
that resonance is electric dipole allowed. More recently, there has been strong interest in the driv-
ing of coherent phonons with infrared activity using lower-frequency electromagnetic radiation.
This mechanism generally applies only to electronically gapped systems in which the gap energy

DISPLACIVE EXCITATION

DECP is a mechanism by which coherent phonons are created by a sudden shift in the effective quasi-equilibrium
value of a vibrational coordinate that happens on a timescale much faster than the period of the associated vibrational
mode. After the shift, the expectation value of the coordinate oscillates around the new quasi-equilibrium value
with a cosine-like waveform and an amplitude equivalent to the magnitude of the shift.
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Infrared active mode:
a vibrational mode
with an electric dipole
that can be excited in
first order by a
time-varying electric
field

is larger than the relevant phonon energy. In this case, a phonon-polariton mode is excited in the
system, provided that the frequency of the driving radiation is close to the natural frequency of
the bare phonon mode (52).

One potential application of driving large-amplitude coherent vibrational modes in crystals in
materials science is the generation of transient electronic states via so-called nonlinear phonon-
ics (53–55). Here the idea is that a sufficiently large coherent amplitude of a specific mode can lead
to a distortion of the lattice along other normal mode coordinates via an anharmonic coupling. In
systems with inversion symmetry, one of the lowest-order couplings of an infrared active mode is
to a displacement of a Raman active mode (53, 56, 57). This displaced Raman mode can, in turn,
induce changes in the electronic structure of the material, which may, in particular cases of strongly
correlated electron systems, drive electronic phase transitions. A recent series of experiments using
time-resolved methods to measure the THz frequency optical conductivity in nonsuperconducting
phases of several cuprates (58–61) and the conventional superconductor K3C60 (62) after resonant
excitation of an infrared active phonon appear to show evidence of features similar to those seen in
the superconducting state, leading to the tantalizing idea that nonlinear phononics may transiently
induce superconducting transport.

The possible structural basis of this interaction has been studied with femtosecond X-ray
diffraction in the case of YBa2Cu3O6.5 (63). In this system, strong excitation of a B1u mode with
300-fs-duration pulses tuned to the resonance frequency of 670 cm−1 was previously observed to
lead to transient changes of the THz frequency optical conductivity that correspond to those seen
on the transition to the superconducting state, suggestive of enhanced interlayer superconducting
coupling (58, 60). In the X-ray experiment, the displacive structural changes in the material are
studied by making time-resolved measurements of the intensity of several selected Bragg peaks.
Although the observed changes are very small (on the order of 0.3%), the data are favorably
compared with a model that predicts strong displacive coupling to a set of 4 A1g modes that lead
to a decrease in the apical oxygen distance and to an increase in in-plane buckling of the Cu-O
layers (see Figure 1). These changes in structure are, via density functional theory calculations,
also shown to alter the hybridization of states near the Fermi energy and may be the determining
factor in driving superconducting-like states in this system.

In systems in which other degrees of freedom are strongly coupled to atomic displacements,
coherent excitations of a mixed character can be driven. One example is so-called electromagnons,
which are generally described as electric-dipole active excitations of spin structure that are observed
in some multiferroic systems, for example, TbMnO3 (64). This perovskite manganite exhibits a
series of low-temperature antiferromagnetic phase transitions, displaying multiferroicity at tem-
peratures lower than 27 K (65, 66). In this state, the uncompensated Mn spins are ordered as a
cycloid within the bc plane with a wave vector along the b direction that is incommensurate with
the lattice. This magnetic structure induces a ferroelectric polarization enhanced by a small atomic
displacement (67). Certain modes of deformation of this spin structure are dynamically coupled to
an electric polarization, making these spin excitations electric dipole active via a displacement of
the oxygen atoms (68, 69). The electromagnon excitations manifest spectrally as two wide absorp-
tion features in the infrared at 0.8 THz and 1.8 THz. A theoretical model of this system proposed
by Mochizuki & Nagaosa (70) indicates that very strong excitation of the higher-energy elec-
tromagnon resonance can drive a persistent switching of the direction of the antiferromagnetic
cycloid order along with the accompanying ferroelectric polarization on a timescale of only a few
picoseconds.

The lower-amplitude limit of this special type of mixed coherent excitation was recently stud-
ied using resonant X-ray diffraction at the Mn L2 edge (71). At this energy, the normally negli-
gible scattering contributions from magnetic order are strongly enhanced, resulting in a strong
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Figure 1
Suggested transient atomic displacements found to be consistent with measured time-dependent structure
factor changes in YBa2Cu3O6.5 resonantly excited at the B1u phonon at 670 cm−1 (63). (a–c) Sketch of the
transient displacement showing a decrease in the apical O-Cu distances by 2.4 pm at oxygen-deficient sites
and an increase in O-Cu-O buckling. (d ) The intrabilayer distance as a function of time. (e) The change in
the in-plane buckling angle α along both a and b . Figure reprinted with permission from Reference 63.

diffraction peak at a position in reciprocal space corresponding to the magnetic ordering. The
intensity of the peak is related to a magnetic structure factor that acts as a projection of the
spin order. Figure 2 shows the measured response, in comparison to the driving electric field at
1.8 THz. Analysis of the magnitude and character of the response suggests that the oscillating
electric field induces a ±4◦ rotation of the plane of the cycloid spin order, which appears to be fully
consistent with the expectations from the theory that predicts switching at THz field strengths
that are approximately 10–20 times higher. The data also show, for the first time, a quantitative
measurement of the spin part of a coherently driven electromagnon.

3.2. Higher-Order Coherences

The experiments described above correspond to structural changes associated with the long-
range order of the sample. In these cases, density fluctuations corresponding to phonons reduce
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Figure 2
Measured coherent magnetic component of a coherent electromagnon in TbMnO3 driven by THz
radiation. (a,b) The red curve denotes driving THz field for two different phases of the driving field. The
blue circles denote measured intensity from the resonant X-ray magnetic peak. The solid curve denotes
results of a simple driven harmonic oscillator model of the dynamics. (c) Response of the system in the
higher-temperature nonmultiferroic sinusoidal phase in which no electromagnon excitation is seen. Figure
adapted with permission from Reference 71.

the intensity of the Bragg peaks through the Debye-Waller factor and give rise to diffuse scattering
between the Bragg peaks. In equilibrium, the diffuse scattering due to phonons is related to the two-
time density-density correlations 〈Qks (0)Q−ks (t)〉 (73). Inelastic X-ray scattering measurements
obtain the spectrum of excitations that is proportional to the Fourier transform of these correlations
(the dynamical structure factor). Because the phonon frequencies are typically at least six orders of
magnitude lower than the X-ray frequency, very high resolution monochromators and analyzers
are required to measure the energy loss (or gain) that occurs in the inelastic scattering process
(74, pp. 317–70; 75, pp. 1–68; 76, pp. 1–32). The high flux and short pulse duration of the
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Figure 3
(a) Measured and (b) calculated thermal diffuse scattering from (001) Ge (unexcited) using 10-keV X-rays.
(c) Change in the X-ray diffuse scattering as a function of time delay following photoexcitation with a
1.55-eV pump for the two points labeled u and v in panel a. Adapted with permission from Reference 72.

FT-IXS: Fourier
transform inelastic
X-ray scattering

hard-X-ray FEL allow for the study of higher-order coherences directly in the time domain
without high-resolution monochromators or analyzers, which offers important advantages for
measuring low-energy collective modes both in and far from equilibrium (72) as well as with
exquisite energy and momentum resolution (77).

The ability to generate and detect high-wave-vector phonons in the time domain was first
demonstrated by Trigo et al. (72) in optical pump, femtosecond X-ray diffuse scattering probe
experiments. The method, dubbed Fourier transform inelastic X-ray scattering (FT-IXS), used
a short, 800-nm pump pulse to promote electrons from the valence band to the conduction
band in a single crystal of Ge. Following the optical pump pulse, 10-keV X-rays from the LCLS
FEL strike the sample at grazing incidence and are scattered in all directions. A multipixel array
detector simultaneously captures a large collection angle, corresponding to scattering vectors
lying in multiple Brillouin zones (see Figure 3). By analyzing the time dependence of the diffuse
scattering as a function of momentum transfer, the authors were able to map out the transverse
acoustic dispersion over a wide range of the Brillouin zone. The highest-frequency phonon that
can be detected is limited both by the pump and probe durations and by uncertainty in the time
delay. In the initial experiments, the timing jitter between the pump and probe pulses was a major
factor limiting the experiment. Recent advances, including those in shot-by-shot timing described
above, allow for measurements of the dispersion throughout the entire Brillouin zone (77). In
both experiments, the results were interpreted in terms of thermal phonon squeezing and the
generation of correlated phonon pairs of equal and opposite momenta that exhibit second-order
temporal coherences. This interpretation was later validated in coherent control experiments in
which an optical pulse pair was used to preferentially amplify or suppress the temporal coherences
(46).

Electron-phonon interactions can generate such higher-order coherences, for example,
through second-order Raman scattering processes that couple to a continuum of modes span-
ning the Brillouin zone. This allows high-wave-vector phonons to be excited by low-wave-vector
optical excitation as long as they are produced in correlated pairs of near equal and opposite
momentum. In the case of ultrafast excitation, squeezed modes are produced through transient
changes in the mode frequencies. In this case, the equal-time displacement-displacement correla-
tions, gks (t) = 〈Qks Q−ks (t)〉, oscillate at twice the excited phonon frequencies, g(t) ∝ cos(2�qs t)
(72). The oscillations in these second-order displacement correlations had previously been seen
both in optical experiments through transient changes to the dielectric function (78) and in X-ray
diffraction experiments as transient changes to the Debye-Waller factor (79). However, in both of
these cases, the experimental observable includes a sum over a density of states such that they give

434 Lindenberg · Johnson · Reis

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
01

7.
47

:4
25

-4
49

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
Po

ha
ng

 U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
an

d 
T

ec
hn

ol
og

y 
(P

O
ST

E
C

H
) 

on
 1

2/
11

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



MR47CH18-Lindenberg ARI 20 May 2017 14:5

indirect information about the average structure. In contrast, the ability to measure excitations with
momentum and time resolution provides a significant advantage and can lead to measurements of
excited state forces as well as to coupling between modes. As described below, the technique has
recently been used to elucidate the nature of the ferroelectric instability in PbTe, which was due
to electron-phonon interactions involving specific states near the direct band gap, similar to the
Peierls mechanism (80). In that experiment, finite correlations were excited for phonons with equal
and opposite momentum but belonging to different branches, leading to temporal oscillations in
the diffuse scattering at the sum and difference frequencies (squeezed combination modes).

4. PHASE TRANSITIONS

The early experiments in the field of ultrafast X-ray scattering involved studies of solid-liquid
or order-to-disorder transitions (8, 14, 81, 82), chosen in part due to the possibility of large-
amplitude, optically driven changes in the diffracted X-ray intensity and stemming from earlier
optical pump-probe studies (83, 84). One of the powerful results of ultrabright X-ray sources is
the ability to probe potentially irreversible dynamics in a single-shot manner. This new capability
enables probing of structural intermediates associated with energy barrier crossings during first-
order phase transitions. Importantly, these atomistic studies enable some of the earliest direct
comparisons with first-principles modeling of the initial steps in these transitions. We review
here two recent examples along these lines, probing high-pressure/shock-induced transforma-
tions. In the first example, measurements by Milathianaki et al. (85) probed the atomistic response
of a prototypical metal, Cu, to transient shocks of amplitude 70 GPa. Whereas previous studies
probed these dynamical responses on nanosecond timescales (86), this was one of the first studies
to probe the first primary steps in a shock-induced phase transition, in this case, probing the
transition from uniaxial elastic compression to three-dimensional plastic flow and enabling direct
comparison to multimillion-atom molecular dynamics simulations. Here an optical laser launched
the shock through an ablation-driven process in which material ablated from the surface launches
a corresponding compression wave by momentum conservation into the solid. The dynamics were
probed by femtosecond X-rays at the LCLS in a transmission geometry, recording changes in the
radius of the associated Debye-Scherrer diffraction rings as a direct measure of the lattice strain
(Figure 4), with diffraction rings arising from an ensemble of quasi-randomly oriented crystal-
lites. In particular, it was possible to distinguish and separate the elastic and plastic responses of
the material by making use of the fact that, for a uniaxial shock propagating in the direction per-
pendicular to the sample surface, X-ray reflections with small Bragg angle correspond to lattice
planes almost parallel to the shock direction, thereby reducing the magnitude of the observed
strain response. In contrast, under conditions in which the large pressures drive a transition to a
plastic, more hydrostatic pressure, the stress is felt from all directions, and the magnitude of the
measured lattice strain is enhanced. In this way, a kind of tomography of the lattice response can
be carried out by probing many reflections, with the magnitude of the observed diffraction peak
shifts scaling like sin2 θB (87), where θB is the Bragg angle. Similar effects have been observed
that are associated with breathing mode responses in nanocrystals (88), for which well-defined
radial breathing modes in CdS nanowires lead to a similar sin2 �hkl dependence of the magnitude
of the shift in the corresponding Bragg peaks, where �hkl is the angle that a particular recip-
rocal lattice vector with Miller indices (hkl ) makes with respect to the radial direction of the
nanorod.

In our second example, related measurements at the LCLS (using the same ablation-driven
shock generation technique) were carried out, probing picosecond-shock-driven phase tran-
sitions in nanocrystals (89). These studies were motivated by attempts to understand the
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Figure 4
Experimental setup and raw data showing shock compression of Cu. (a) Experimental setup showing a
single-shot pump-probe scheme. An optical pulse launches a high-pressure shock into a bulk solid with the
lattice response probed in transmission by femtosecond X-ray pulses. (b) Raw data showing a shift of the
Debye-Scherrer diffraction rings to higher-momentum transfer (Q) on picosecond timescales and a
transition from elastic strain to plastic strain. Abbreviations: CSPAD, Cornell-SLAC Pixel Array Detector;
FEL, free-electron laser; LCLS, Linac Coherent Light Source. Adapted with permission from Reference 85.

intermediate states and dynamical pathways that materials follow during first-order pressure-
induced phase transitions. Nanocrystals represent model systems for this kind of study because
they behave as individual crystalline domains and separate the competing processes of nucleation
and growth (90). Whereas the kinetics of these processes had been studied in detail in nanocrys-
talline systems (91, 92), the associated dynamics and atomic-scale pathways associated with this
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Figure 5
(a) Schematic for laser-driven shock studies of CdS nanorods and the resulting transmission diffraction
pattern. (b) Diffractogram showing the time-resolved X-ray diffraction response as a function of time and
momentum transfer (Q). The phase transition from the low-pressure wurtzite phase to the high-pressure
rocksalt phase is manifested by the appearance of the (200) Bragg peak, which is forbidden in the
low-pressure phase. (c) Analysis of the (002) dynamic response showing evidence at low stress for predicted
initial compression along the c-axis. (d ) At high pressures, a different transformation pathway emerges.
Adapted with permission from Reference 89.

transition were not understood. Figure 5 shows the result of an ensemble of single-shot measure-
ments in which a picosecond-rise-time shock with amplitude ≈10 GPa drives the system from a
wurtzite phase at equilibrium into a metastable rocksalt phase at high pressure. This process is
manifested most obviously by the appearance of a previously symmetry-forbidden (200) reflection
that grows in at Q ≈ 2.3 Å−1. However, more information can be obtained by probing time-
dependent shifts in the Bragg peaks and comparing the results with first-principles simulations.
In particular, prior theoretical studies had predicted that the transformation pathway for these
systems involved an initial compression along the c-axis of the nanorod to form a five-coordinate
h-MgO-type intermediate followed by compressive shear along the a-axis toward the cubic rock-
salt structure (93, 94). The measurements show that, just below the transformation threshold,
the structure indeed approaches the five-coordinate h-MgO-type intermediate observed under
simulated hydrostatic compression, showing the dominant compression along the c-axis that is
associated with a shift of the (002) reflection to higher Q (Figure 5). In contrast, the orthogonal
(100) reflection does not shift, and the intermediate (101) shifts a smaller amount, as would be
expected. However, when brought above the transformation threshold by shock compression,
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the h-MgO structure is not observed. Instead, the wurtzite (002) reflection simply decreases as
the rocksalt (200) grows in, without evidence for any shift in the (002) reflection as observed at
lower pressures. The decreasing prevalence of the intermediate with increasing shock stress indi-
cates that a different pathway for the transformation becomes possible at high shock stresses, in
close analogy with the action of a catalyst in a chemical reaction. More recently, studies of phase
transitions at the nanoscale have been carried out at the single-nanoparticle level, making use of
the transverse coherence of X-ray FELs at the LCLS and at SACLA (95–97). These studies are
discussed in further detail below.

In addition to the strongly first-order transitions discussed above, recent efforts have been able
to significantly extend these studies toward the study of phase transitions in strongly correlated
materials, involving contributions from charge, orbital, and structural degrees of freedom. In an
experiment on the charge-ordered phase of the perovskite manganite Pr0.5Ca0.5MnO3, Beaud
et al. (98) applied time-resolved X-ray scattering to study the interplay between charge order,
orbital order, and structure during a phase transition induced by strong near-infrared absorption
with a 55-fs-duration light pulse. In this experiment, the X-ray energy was tuned to the vicinity
of the Mn K-edge, which strongly enhances second-order scattering contributions from valence
states of the Mn ions that are normally too weak to be detected. This energy tuning allowed for
selective probing of different types of long-range order in the system, as shown in Figure 6. The
(03̄0) peak is sensitive primarily to the valence charge ordering on the Mn ions. The intensity
of diffraction from this peak is suppressed on a timescale of approximately 100 fs, limited by the
time resolution of the experiment. Above 5 mJ/cm2 fluence, the excitation from the laser com-
pletely suppresses the diffraction from this peak, implying that the charge order is completely
melted on this timescale. The other two diffraction peaks shown are sensitive either to the purely
structural superlattice distortion [the (2̄ 1

2 0) peak] or to a combination of orbital order and local
Jahn-Teller distortions [the (0 5̄

2 0) peak]. The dynamics of the intensity for these diffraction peaks
show oscillatory dynamics that persist after the melting of charge order, suggesting that these
orders are not directly melted by the excitation process but are instead coupled to the melting
of charge order. A model of this coupling treating the melting process as driven by a single
time-dependent order parameter that is coupled to each of these different types of order
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Figure 6
Measured light-induced changes in X-ray scattering in Pr0.5Ca0.5MnO3 near the Mn K-edge for three superlattice reflections sensitive
to (a) structural, (b) orbital, and (c) charge order. Measurements show that light excitation melts the Mn valence order before coupling
to the orbital and structural degrees of freedom. Adapted with permission from Reference 98.
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successfully explained the main features of the dynamics connected with the phase transition,
which includes large-amplitude coherent oscillations of the structure in the transiently created
molten phase.

5. ELECTRONIC/CHARGE-DRIVEN PROCESSES

The functionality of materials is often determined by energy exchange between electronic and
lattice degrees of freedom, and femtosecond X-ray scattering studies provide a unique window
into these processes. For example, the efficiency of a solar cell is determined in part by hot carrier
relaxation following photon absorption; X-ray studies sensitive to lattice motion can capture the
first steps in how the lattice heats up, as reflected in the increased RMS displacements of the atoms
in a crystal (8, 99, 100), in this way directly resolving in the time domain the flow of energy between
these different degrees of freedom. In many cases, as noted above, carrier excitation can lead to
nonthermal excitations, e.g., electron-phonon coupling processes in which electronic excitation
directly leads to a carrier-driven stress. The study on Pr0.5Ca0.5MnO3 discussed above represents
a good example of such an effect. The first investigations of carrier-driven structural deformations
were carried out by optical pump-probe experiments that indirectly probed the carrier-induced
stress on picosecond timescales, as reflected in changes to macroscopic properties such as the index
of refraction (38, 84), but recent studies have been able to probe these unique lattice responses
directly in the time domain at atomic resolution (41, 82, 88, 101, 102).

In materials that exhibit strong coupling between electronic and lattice degrees of freedom,
these effects can be particularly important. For example, in ferroelectric materials, the intrinsic
polarization, which underlies their key functionality with respect to information storage tech-
nologies, is strongly coupled to electronic degrees of freedom, including currents and surface
charges. In one interesting example, consider that one may switch the polarization in a thin film
ferroelectric by modulating the oxygen partial pressure above the surface, an effect driven by
charge compensation that modulates the depolarization field in a ferroelectric (104, 105). These
depolarization fields can be compensated for by the presence of electrodes (106, 107) or by free
carriers, opening up new means for all-optically manipulating the functional properties of such
materials. For example, optical excitation leads to the development of time-dependent currents,
e.g., a bulk photovoltaic effect (108–110), which in turn can couple to structural degrees of free-
dom, representing a kind of all-optical bias. Recent femtosecond X-ray scattering studies have
investigated these processes at the LCLS, probing optically driven structural changes in PbTiO3

thin films (103). Measurements probed time-dependent shifts in the out-of-plane (003) reflection
following above-gap 400-nm excitation. At room temperature, the film stabilizes in a monodomain
phase, with polarization normal to the film (111). In contrast to the response observed under sim-
ple thermal heating effects (e.g., a contraction of the c-axis lattice parameter associated with a
reduction in the tetragonality of the unit cell), the observed dynamics exhibit a significantly more
complex response (see Figure 7). In particular, a short-time compressive response is observed,
followed by a long-lived expansive effect, which saturates as a function of fluence (not shown in
Figure 7). At higher temperatures, the volatile adsorbates that stabilize the monodomain phase are
removed, and a stripe phase is formed that consists of alternating regions of opposite polarization
with period of order 10 nm. This phase transition is driven under static conditions by a trade-off
between the energy of the uncompensated depolarization field and the domain walls. Under these
initial conditions, a similar dynamical response in the c-axis dynamics is observed following photon
absorption. In addition, dynamic changes in the satellites associated with the stripe phase are seen;
in particular, there is a long-lived increase in the domain period, as reflected in changes in the
radius of this diffuse side band. Taken together, all these effects are consistent with an optically
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Figure 7
(a) Time-dependent changes in the (003) reflection from a PbTiO3 thin film on a SrTiO3 substrate
measured on the left and right sides of rocking curve peak (squares and circles, respectively). Following a
short-time compressive feature associated with a transient photo-induced shift current response, a long-lived
expansive response is observed, occurring in the opposite direction as that expected for a simple temperature
jump. This expansion is associated with a carrier-driven screening of the depolarization field that leads to
increased tetragonality as measured. Solid lines are fits using the time-dependent stress shown in the inset.
(b) Transient changes in diffuse scattering associated with ferroelectric stripe phase observed at higher static
temperature (535◦C). These changes are characterized by domains of opposite polarization with period of
order 10 nm. The figure shows both extracted time-dependent changes in the out-of-plane c-axis, consistent
with those measured at room temperature, and changes in the stripe domain period, consistent with an
ultrafast screening of the depolarization field. Adapted with permission from Reference 103.

driven screening of the depolarization field through carrier excitation. Recent studies in related
ferroelectric and multiferroic systems have confirmed the above interpretations (16, 112). In con-
trast to the above measurements, in which carrier excitation modulated the internal electric fields
within a ferroelectric thin film, related measurements have directly probed the influence of ultra-
fast electric fields on BaTiO3 ferroelectric thin films in a THz pump–X-ray probe geometry (113).
In these studies, a THz pump pulse acts as an ultrafast electric field bias oriented perpendicular
to the out-of-plane ferroelectric polarization. Modulations in the (003) structure factor indicated
large-amplitude rotations of the polarization in addition to lattice strains associated with resonant
excitation of the ferroelectric soft mode.

A related example concerns time domain studies of PbTe, a narrow-gap semiconductor and
high-temperature thermoelectric material that exhibits incipient ferroelectric behavior. It shares
many similarities with other group IV–VI and V and related materials that exhibit coupled elec-
tronic and lattice instabilities (114, 115). Here small differences in the microscopic properties can
lead to large changes in the macroscopic properties. The thermoelectric behavior of PbTe has
been linked to large anharmonic interactions and to its incipient ferroelectricity (116). In addition,
inelastic neutron scattering results show large anomalies in the soft transverse optical mode that
has been interpreted in terms of both extended anharmonic interactions between modes (117)
and local symmetry breaking (118). Motivated by these studies, Jiang et al. (80) used femtosecond
X-ray diffuse scattering to investigate the nature of the ferroelectric instability. By using ultrafast
optical excitation just above the direct band gap, they produced a nonequilibrium population of
electrons and holes in the very states at the band edges that are expected to play an important role
in determining the equilibrium structure. Importantly, the ultrafast electronic excitation triggers
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Figure 8
(a) Simulation and (b) experimental FT-IXS spectra for PbTe photoexcited with 2-µm radiation, measured along the � line in the (1̄13)
Brillouin zone. The data show overtone and combination modes at 2TA and TO ± TA frequencies that are consistent with
photoexcitation weakening the ferroelectric instability and further stabilizing the paraelectric state. TA denotes transverse acoustic, and
TO denotes transverse optical. (c) Comparison of time-dependent scattering for both simulation and experiment at select wave vectors.
The simulation does not include the picosecond-timescale heating of the lattice. Reproduced with permission from Reference 80.

a transformation to such a state at constant volume and without introducing the defects associated
with chemical doping. Some results for the FT-IXS spectra are shown in Figure 8, which also
includes simulations based on first-principles calculations for both the ground and excited states.
Unlike previous FT-IXS results on Ge (72, 77), the data show both overtones and combination
modes. The latter results from a differential change in the real-space force constants and is consis-
tent with previous studies showing that long-range interactions are due to the resonant bonding
of the unsaturated p orbitals (119). In this case, photoexcitation further stabilizes the paraelectric
state, renormalizing the phonon modes, including hardening the soft TO mode near the zone
center, softening the modes near the zone edge, and changing the eigenvectors causing a mix-
ing of the acoustic and optic branches. The results are consistent with a Peierls-like instability,
connecting the bond and band pictures of the ferroelectric distortion (114). Importantly, these
findings show that electron-phonon interactions drive instability in a classic ferroelectric fashion
and that the strong lattice anharmonicity is more a consequence than the driver of this behavior.

6. OUTLOOK

We conclude by briefly providing an outlook on the field of ultrafast X-ray scattering and where
it may lead in the future, in particular making some further comments regarding single-particle
studies. From a general perspective, femtosecond coherent X-ray sources provide a powerful means
for visualizing atomic-scale processes as they evolve. However, all the studies described above
were performed on bulk materials, thin films, or collections of nanoparticles and thus represent
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ensemble averages. Heterogeneity is particularly important in determining materials properties.
Therefore, extending such techniques with real-space imaging would be particularly valuable.
Recent FEL experiments have made use of the high brightness to explore the dynamics of individual
nanoparticles (see, e.g., References 95, 97, 120, 121). This approach could ultimately allow one
to obtain critical information on how functionality varies with small changes in particle size,
morphology, strain, defect concentrations, or surface preparation. For example, Bragg coherent
diffraction imaging (BCDI) enables atomic-scale imaging of single particles, allowing for the
detection of single dislocations and other defects by using iterative phase retrieval methods (122–
124). Clark et al. (95) used this approach to generate real-space images of the generation and
evolution of coherent acoustic phonons in a single gold nanocrystal through a combination of
BCDI with pump-probe techniques. In this experiment, gold nanoparticles were excited by a
femtosecond Ti:sapphire laser, and their individual coherent diffraction patterns were tracked in
time. The angular position of the Bragg peaks showed oscillations on the picosecond timescale
that correspond to two vibrational breathing modes of the nanocrystal. However, because BCDI
retrieves the amplitude and phase of a Bragg peak, Clark et al. were able to extract much more
information, generating three-dimensional dynamical strain maps with picometer sensitivity and
nanometer spatial resolution, as shown in Figure 9. They were thus able to detect coherent shear
modes that would otherwise have been undetectable from the position of the Bragg peak. In a
later experiment, Clark et al. (97) used the same technique to image transient but fully reversible
melting and acoustic mode softening in gold nanoparticles, consistent with a core-shell model for
melting. Similarly, measurements at SACLA applied coherent imaging techniques to probe phase
transition dynamics in single VO2 nanocrystals (120). Finally, Ferguson et al. (121) used an X-ray
pump–X-ray probe technique using two 10-fs X-ray pulses at ≈8.3 keV with adjustable delay
(associated with the radiation from two independent electron bunches within the undulator with
slightly different energies) to probe X-ray–induced lattice changes in a single 70-nm xenon van
der Waals cluster. A first intense X-ray pulse focused to an ≈100-nm spot size ionized the cluster,
and the second pulse probed the induced structural changes in the single particle through changes
in the position of the Bragg peak as measured on a large-area detector (Figure 9). Surprisingly,
a short-time collective compression effect was observed to develop on a timescale of tens of
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Figure 9
(a) Raw coherent diffraction snapshots from single gold nanocrystals at two different time delays following photoexcitation.
(b) Reconstructed real-space image of the evolution of coherent acoustic phonons within a nanocrystal. (c) Raw data from X-ray
pump–X-ray probe studies of the structural response of a single xenon cluster, showing X-ray–induced lattice contractions associated
with a shift of the Bragg peaks to higher Q. Adapted with permission from References 95 and 121.
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femtoseconds, which the authors explained via an electron delocalization effect associated with
the X-ray–induced solid-to-plasma transition. The high flux of the FEL allows for X-ray pump–
X-ray probe studies more generally, as was recently demonstrated in Reference 125, in which
the authors used the SACLA FEL to visualize X-ray–induced atomic displacements in diamond.
These studies are important for understanding the limitations of single-particle X-ray imaging.

The experiments described above provide an early glimpse at the potential for probing the
dynamics of single nanosized materials or within spatially heterogeneous systems with variation
or disorder at the nanoscale. Multiple-pulse X-ray studies associated with X-ray photon correlation
spectroscopy techniques have the potential to further extend these measurements to probe not
just equilibrium fluctuation dynamics (126, 127) but also the structural fluctuations that occur
during nonequilibrium events, e.g., dynamics in the presence of an energy barrier, as often occurs
during first-order phase transformations. Significantly, many of the experiments discussed above
will benefit from next-generation FEL sources projected to turn on in the very near future,
enabling high-repetition-rate (MHz) studies of materials dynamics (128). Here challenges await
as well with respect to sample reversibility, but there are already experiments that demonstrate
the feasibility of such approaches (21–23). Finally, new source developments are pushing toward
even shorter wavelengths, enabling higher-resolution dynamical snapshots and the application of
pair distribution function techniques (129) to resolve atomic-scale motions.

SUMMARY POINTS

1. In the last five years, new opportunities have emerged, enabled by the development of
X-ray free-electron lasers, which dramatically enhance our ability to probe atomic-scale
rearrangements in real time on femtosecond timescales in situ.

2. Applications of these new sources extend beyond the realm of materials science to, for
example, biology, chemistry, physics, and geophysics.

3. With respect to materials science, these techniques provide a new means for visualizing
materials functionality and the flow of energy between different degrees of freedom in
complex materials and devices, under both near-equilibrium and highly nonequilibrium/
single-shot conditions.

4. These visualization techniques in turn couple directly to first-principles modeling and
simulations.

FUTURE ISSUES

1. The use of the transverse coherence of X-ray free-electron laser beams for dynamic
coherent imaging of structure is still in its early stages. Early demonstration experi-
ments show the power of this approach to visualize in three dimensions the dynamics of
nanocrystalline or spatially heterogeneous systems, but novel opportunities remain.

2. New opportunities at higher repetition rates are emerging, extending current studies
at 120 Hz by several orders of magnitude. The range of materials systems that can be
explored through these new sources will expand even further, in particular toward studies
in the near-equilibrium limit with sensitivity to the lattice deformations that occur in
near-equilibrium conditions.
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