Ultrafast dynamics in solids, liquid, and gas

- Using pump-probe techniques
- (1) diffraction (x-ray, electron)
- (2) x-ray spectroscopies: XAS, XES, RIXS
- (3) electron spectroscopies: ARPES, XPS, AES, EELS
- (3) optical measurements: reflectivity, photoluminescence, MOKE

• To investigate

(1) Order-melting dynamics: lattice, charge, spin, orbital, …

(2) Photo-induced phase transition

(3) Roles of intermediate states

• • • • • •

• Usual dynamics in solids

(1) fast order-melting/emerging by creation of e-h pairs

- (2) fast order-recovering by electronic recombination
- (3) slow order-melting by thermal processes

(4) slow order-recovering by cooling

• • • • • •

Ultrafast Electron Diffraction (UED)

• Space charge effects \rightarrow poor temporal resolution

Z. Tao et al., J. Appl. Phys. **111**, 044316 (2012)

Why UED?

- 1. 10^4 10^6 times larger scattering cross sections, good to study much smaller samples or gas & liquid.
- 2. Elastic mean-free-path is similar to optical pumping depth, good for pump-probe experiments.
- 3. 103 times less radiation damage per elastic scattering event.
- 4. Easily manipulated by EM lenses.

MeV UED vs keV UED

- 1. Minimize emittance and bunch length growth.
- 2. Naturally solve the velocity mismatch issue (v_e < v_{ph}).

3. RF bunch compress

 \rightarrow Much better temporal resolution down to 30 fs (500 fs with keV UED).

X. Sun et al., arXiv:2108.04860 (2021)

• Schematic of MeV UED beamline @ SLAC

• RF quality • UV & e-beam quality

- Sample chamber
	- Sample manipulator for translation & rotation
	- Sample holder for TEM grids or SiN windows
- Electron detector

TABLE I. Typical machine and beam parameters of the MeV UED system.

Parameters	Values
Repetition rate	120 Hz
Gun gradient	79.5 MV/m
Launching phase	10°
Solenoid strength	0.314 kG-m
UV spot size, rms	40 μ m
UV pulse duration, FWHM	60 fs
UV energy stability, rms	2.5%
Initial beam charge	75 fC
Intrinsic emittance	0.5 mrad
Collimator diameter	500 μ m
Beam charge	60 fC
Beam size (diameter)	$400 \ \mu m$
Normalized emittance	18 nm-rad
Bunch length, rms	102 fs
Kinetic beam energy	3.68 MeV
Relative energy spread, rms	6.6×10^{-4}
IR pump spot size (diameter)	1.5 mm
IR pump pulse duration, FWHM	60 fs

1st Chamber: Cryo and Quantum Materials

 \bullet

Techniques

- Time resolution diffraction
- Momentum resolved scattering \bullet

Cryogenic Environment (upgrade)

 $<$ 20 K – 300 K $*$

*Temperature in the range $10 - 20$ K may be achievable in certain circumstances, please discuss feasibility with UED staff

Sample Card

- <10 TEM style samples
- 6 axis motion $(X, Y, Z,$ pitch, yaw, roll) \bullet

Laser

800, 400, 266 nm, OPA (UV $-$ 2 um), THz^{*}

Best momentum resolution ($\leq 0.17\text{\AA}^{-1}$) \bullet

• Reciprocal space resolution

q-resolution

$$
\Delta q = 2\pi \frac{\Delta \theta}{\lambda} = 2\pi \frac{\Delta r/L}{\lambda} \approx 2\pi \frac{\sigma_{\theta}}{\lambda} = \frac{2\pi}{\lambda_{\text{C}}} \frac{\epsilon_{n}}{\sigma_{x}} \qquad (\epsilon_{n} = \gamma \beta \sigma_{x} \sigma_{\theta})
$$

 Δr : rms width of the diffraction spot

- L : distance between sample & detector
- σ_{θ} : beam divergence at the sample
- σ_x : beam size at the sample
- ε_n : normalized emittance
- λ_c : Compton wavelength

q-resolution is determined by ε_n when σ_x is fixed.

Emittance ε = (area of particle distribution in x and α_x)

• Beam size & normalized emittance control varying collimator diameter

The solenoid is the only focusing element and is tuned to deliver the sharpest diffraction features to the detector.

※ Phosphor screen resolution

$$
\Delta q = 2\pi \frac{\Delta r/L}{\lambda} = 2\pi \frac{10^{-4}/3}{0.33 \times 10^{-2}} \,\text{\AA}^{-1} \approx 0.06 \,\text{\AA}^{-1}
$$

perovskite a = 4 Å \rightarrow k_{BZ} = π/a = 0.8 Å⁻¹

• Temporal resolution

 $\tau = \sqrt{\tau_e^2 + \tau_{ph}^2 + \tau_{\rm TOA}^2 + \tau_{\rm VM}^2}$

 τ_e : pulse duration of the probe pulse \rightarrow 10° launching phase for shortest bunch length at the sample τ_{ph} : pulse duration of the pump pulse

 τ_{TOA} : time-of-arrival jitter between the pump and probe pulses < 50 fs (slide 3, rf quality) τ_{VM} : velocity mismatch (due to intersection angle between pump and probe pulses)

From the intensity of the (410) ring of 25 nm thick Bi(111)

• UED Gallery

 $\frac{hBN}{[T,1]}$ hBN $[B, 1]$

 $\frac{hBN}{[B,2]}$

hBN $\sqrt{17.2}$

> WS2 W Se2 똏

Nano materials

Materials for photovoltaic

Diffuse scattering

Light-induced charge density wave in LaTe₃ Gedik group, Nat. Phys. **16**, 159 (2020)

Simultaneous observation of nuclear and electronic dynamics by UED Science **368**, 885 (2020)

Simultaneous observation of nuclear and electronic dynamics by UED Science **368**, 885 (2020)

Toward better temporal resolution 上海交通大學, Phys. Rev. Lett. **124**, 134803 (2020)

Toward better temporal resolution 한국원자력연구원, Nat. Photon. **14**, 245 (2020); Struct. Dyn. **7**, 034301 (2020)

