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Introduction

Without any doubt, one of the most fundamental properties of a solid is its crystallo-
graphic structure. A thorough understanding of the physical properties of condensed
matter requires a detailed mapping of the atomic structure and its dynamics over
multiple length scales and different time scales. Several methods may provide a
detailed description of the structural organization of matter, such as elastic scat-
tering/diffraction of X-rays, neutrons or electrons, X-ray absorption spectroscopies
(EXAFS and XANES), and magnetic resonance spectroscopies (NMR, NQR). X-ray
diffraction is nowadays routinely applied through laboratory diffractometer setups
run by X-ray tube or rotating anode sources, whereas synchrotron radiation facilities,
owing to their wavelength tunability and high spatial and temporal coherence, afford
additional possibilities of unique experiments such as resonant X-ray diffraction or
coherent scattering.



1. INTRODUCTION

Atomic-scale motions in materials occur across a vast range of timescales and length scales. Our
understanding of these processes is shaped by our ability to probe them, and over the past century,
a range of approaches have been adapted to try to visualize how atoms are moving. For example,
in the frequency domain, optical techniques such as infrared or Raman spectroscopy are sensitive
to vibrational degrees of freedom and can extract important structural information. Over the last
several decades, significant efforts have been made to go beyond these more indirect approaches
and to develop means to reconstruct the structure of materials at atomic-scale resolution as they are
evolving. This means extending basic techniques such as X-ray crystallography, as often applied to
measure frozen-in structures of biologically relevant molecules, to extract the intermediate states
and mechanistic pathways that the molecules pass through as they transform (i.e., not just reactant
and product states) (1). In the realm of materials science and solid-state physics on which this review
is focused, direct information concerning how atoms are moving and how unit cells are deforming
and reconfiguring can be obtained through these approaches, despite the fact that the timescale
for these dynamics can be as fast as a few tens of femtoseconds (10~1° s), comparable to the period
of the highest-frequency optical phonons. For example, the original fruit fly of femtosecond X-ray
experiments concerned the study of bismuth crystals, where time-dependent measurements of the
X-ray structure factor enable direct measurement of the unit cell deformations associated with the
A, phonon mode and the Peierls distorted structure (2, 3). Since these early days, sources have
improved by many orders of magnitude in brightness (4), and the range of materials systems that
can be studied and the information that may be gleaned have been extended to encompass a vastly
larger phase space.
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Brief early history of the time-resolving studies.

1872-1878 Eadweard Muybridge, The Man Who Stopped Time, solved
Galloping Horse Problem. The project cost was about $50,000.

1899 Abraham and Lemoine measured the duration of light emitted by the
spark by using light-path varying measurement. The lifetime was <10 ns.
1917 first electric stroboscope was invented, camera frame rates reached up
to ~1k fps.

1950 Norrish and Porter demonstrated the 1st real pump-probe experiment.
Flash lamps is used to excite photochemical reactions and probed them
spectroscopically with varying delays in ys—ms range. (Nobel prize for
chemistry in 1967)



Brief history of the short-pulse generation.

1917, Albert Einstein established the theoretical foundations for the laser and maser

1950, Alfred Kastler (Nobel prize winner, 1966) proposed optical pumping method.

1952, Brossel, Kastler, and Winter experimentally demonstrated optical pumping method.

1960, Maiman realize the 1st laser (ruby). The laser pulse duration was in ps—ms range.

1961, Hellwarth proposed Q-switching laser equipped with Kerr-cell shutter.

1964, First (active) mode-locking HeNe laser (>~1 ns) demonstrated by Hargrove, Fork, and
Pollack.

1965, First (passive) mode-locking laser (Ruby) was demonstrated by Mocker and Collins.

1966, passive mode locking of a Nd-glass laser (< 1ns), later Nd-YAG laser obtained pulse duration
of 10 ps

1967, Stephen E. Harris et al. demonstrated spontaneous parametric down-conversion. (OPG)
1974, Shank and Ippen realized tunable broad gain dye laser which has a pulse duration of <1ps
1987, Fork et al. reported group velocity dispersion compensation technique to achieve 6 fs pulse.
1987, McPherson et al. generates high harmonic emission.

1991, Spence, Kean, and Sibbett demonstrated spontaneous dynamic mode locking laser based on
Ti:sapphire

1994, Zhou et al. demonstrated Ti:sapphire laser pulse of 8 fs duration using group velocity
dispersion compensation.


https://en.wikipedia.org/wiki/Albert_Einstein

Brief history of the ultrafast x-ray sciences.

InSb (0 0 4) Phys. Rev. B, 27 2264-2277, (1983)
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Brief history of the ultrafast x-ray sciences.

Time-resolved x-ray scattering offers:

e Quantitative information on magnitude of coherences,
e Measurement of certain types of couplings,
e \Wave vector of coherences.



Brief history of the ultrafast x-ray sciences.

e 1989-1993, Ultrashort x-ray pulse from femtosecond laser driven plasma was
generated and started to use .
e 1996, ultrafast (~ps) streak camera developed and adopted on synchrotrons.
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Brief history of the ultrafast x-ray sciences.

e 1989-1993, Ultrashort x-ray pulse from femtosecond laser driven plasma was
generated and started to use .
e 1996, ultrafast (~ps) streak camera developed and adopted on synchrotrons.
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Brief history of the ultrafast x-ray sciences.

e 1996, fs x-ray generation at synchrotron were proposed.
2000, Synchrotron based fs x-ray pulse were generated.

e 2007, Pump-probe experiments using fs x-ray pulse based on Linac (at SLAC)
were reported. (Optical phonon oscillation on Bismuth)

e 2009, LCLS, the 1st hard x-ray XFEL was commissioned at SLAC
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General scheme of a time-resolved experiment
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Time-resolved X-ray scattering formalism
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Bragg Peak Intensity & Shape Changes

(a) undistorted crystal
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Bragg Peak Intensity & Shape Changes

(c) crystal ;Nith clusterized 10% photoexcited
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Bragg Peak Intensity & Shape Changes

(e) crystal with coherent acoustic phonon
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Bragg Peak Intensity & Shape Changes

(g) crystal with static disorder
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Debye-Waller Parameter Change by Perturbation
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Structural Phase Transition: Non-thermal melting
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Structural Phase Transition: Non-thermal melting
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Coherent & Incoherent Lattice Vibration
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Coherent & Incoherent Lattice Vibration
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Coherent & Incoherent Lattice Vibration
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Bragg Peak Shift by Lattice Expansion
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Bragg Peak Shift by Lattice Expansion
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Bragg Peak Shift by Lattice Expansion

- 10°
0.00 -

101
g <
© —0.02 =
= =
e
g - 1072
© o g
G -0.04 p=
wn
g“ g
I3 10738
€ —-0.06 &

—0.08 - F 107

Delay (ps)



Bragg Peak Shift by Lattice Expansion
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SHOT-BY-SHOT TIMING MEASUREMENTS

Because pump and probe pulses are typically generated by independent sources at X-ray FELs, there is often
significant timing jitter/fluctuations (of the order of hundreds of femtoseconds). In this situation, auxiliary diagnostic
experiments are often used to measure precisely the timing difference between particular pairs of pulses, which allows
for postsorting data by actual arrival time at the experiment so that the overall time resolution of the experiment is
uncompromised. In these auxiliary experiments, the roles of pump and probe are often reversed relative to the main
experiment. A frequently encountered case is one in which the arrival time of the X-ray beam must be compared
with that of a conventional femtosecond laser system that operates in or near the visible part of the spectrum.
One popular solution to this problem is to use a small portion of the X-ray pulse to transiently change the optical
properties of a thin material. These changes are measured by the transmission or reflection of a spectrally chirped
optical pulse derived from a split-off portion of the conventional laser system. Here chirped means simply that the
pulse is stretched in time so that the arrival time of the pulse on the thin material varies over the fairly broad set of
wavelengths that compose the femtosecond laser pulse. A spectrograph set to measure the pulse after interaction
with the thin material can then probe the time-dependent reflectivity over a substantial temporal range in a single
shot (6, 7). As an alternative to using chirped pulses, a similar outcome can be achieved using a cross-beam geometry
(5, 8, 9). Shot-by-shot diagnostics are also used to correct for other types of uncontrolled fluctuations, most often
related to the spectrum, intensity, and pointing of the beam.



General scheme of a time-resolved experiment
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Irreversible Phase Transition
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