Through the Lens of a Momentum Microscope: Viewing Light-Induced Quantum Phenomena in 2D Materials Ouri Karni, Iliya Esin, and Keshav M. Dani, Adv. Mater. **34**, 2204120 (2022)

Toward Higher E/AE in Electron Analyzer

Concentric hemispherical analyzer (CHA) has been preferred.

perfect control of electrostatic lens system (SIMION+PC?)

SES-200: Mårtensson et al., JESRP **70**, 117 (1994)

Ovsyannikov et al., JESRP 191, 92 (2013)

electrostatic lens aberration correction + high spatial resolution in electron detector

Toward Higher E/ΔE in Electron Analyzer

Stable electronic ground (< 0.1 meV) is essential.

High energy resolution requires low temperature < 10 K (300 K ~ 25 meV \rightarrow 0.1 eV width in Fermi function)

ARPES in Old Days

rotate sample or analyzer

Takahashi group, PRB **58**, 7675 (1998)

2 day measurements!

VSW Ltd. Phys. Today '83

Two-Dimensional Electron Detector: MCP + Phosphor Screen + CCD

MCP size: up to ϕ 77 mm by Hamamatsu https://www.hamamatsu.com up to 20 x 20 cm² by Incom, Inc. https://incomusa.com spatial resolution ~20 µm

phosphor screen P43(Gd₂O₂S:Tb):

best efficiency, $\lambda = 545$ nm (green), spatial resolution: ~100 µm (~300 ch for $\phi 40$ MCP $\rightarrow \Delta\theta \sim 0.1^{\circ}$ for $\theta \sim \pm 15^{\circ}$) 10% decay time 1 ms \rightarrow not suitable for time-resolved measurements

Two-Dimensional Electron Detector: MCP + DLL

multi-hit design

Active diameter: 10 – 150 mm Spatial resolution: down to 30 µm Multi-Hit designs: > 10 hits Time resolution: < 200 ps Repetition rate: 9 MHz cf. Ti:Sapphire fs laser up to 80 MHz single-bunch storage ring ~ 1 MHz

https://www.surface-concept.com/downloads/info/delaylinedetectors.pdf

Effects of Finite Δk_{\perp} in ARPES Even in Quasi-2D System

Leem et al., PRL 100, 016802 (2008)

In most ARPES, $\Delta k_{\perp} > 0.1 \text{ Å}^{-1}$ due to photoelectron escape depth

graphite

Small beam size is essential for Van der Waals 2D materials.

Importance of Δk_{\parallel} in ARPES especially for Dirac fermions

HD Kim unpublished

High ∆k₁ is essential to probe
Dirac/Weyl fermions.
Single Dirac energy can be measured only in STM.

Multichannel Spin-Polarization Detector @ Mainz

Kolbe et al., PRL **107**, 207601 (2011)

Using W(100) or Au/Ir(100) spin-filter crystal, specular geometry spin-polarized low-energy electron diffraction k_{\parallel} conservation \rightarrow 2D lateral image preservation 4-bundle electron-optical simulation optimum working point: scattering energy 26 eV reflectivity R = 1.2%asymmetry S = 0.43

Multichannel Spin-Polarization Detector @ Mainz

Kolbe et al., PRL 107, 207601 (2011)

spin polarization

$$P_{ij} = \frac{A_{ij}}{S_{ij}} = \frac{I_{ij}^+ - I_{ij}^-}{I_{ij}^+ + I_{ij}^-} \frac{1}{S_{ij}}$$

Au-Passivated Ir(100) Spin Filter by MPI Halle

Kirschner group, PRB 88, 125419 (2013)

Lofink et al., RSI 83, 023708 (2012)

Photoemission Momentum Microscopy (PEkM)

Measure ARPES in 2D k-space

(1) High-Resolution Time-of-Flight Analyzer + MCP + DLL
 2D k-space image + spectrum (pulsed photon source (pulse width < 10 ps))

(2) PEEM Electrostatic Lens + 2 CHA + MCP + Phosphor Screen + CCD Camera2D k-space image with fixed energy (CW or pulsed photon source)

(3) PEEM Electrostatic Lens + High-Resolution Time-of-Flight Analyzer + MCP + DLL

High-Resolution Time-of-Flight Analyzer (ArToF10k)

Ovsyannikov et al., JESRP 191, 92 (2013)

$$v = \sqrt{2E/m} = \sqrt{\frac{2E \times 1.6 \times 10^{-19} \text{ J/eV}}{9.11 \times 10^{-31} \text{ kg}}} = 0.6 \times 10^6 \sqrt{E(\text{eV})} \text{ m/s}$$

$$E = \frac{1}{2}m(d/t)^2 \longrightarrow |E/\Delta E| = |t/2\Delta t|$$

drift energy $E_d = 3 \text{ eV}$, v = 10⁶ m/s, 1 m drift \rightarrow 1 µs

time resolution of electronics and detector ~ 0.1 ns \rightarrow E/ Δ E = 5,000

 $\Delta E = \sqrt{(\alpha E^{3/2} \Delta t)^2 + (\beta E \Delta d^{\gamma})^2} \longrightarrow \Delta E = \alpha E^{3/2} \Delta t \text{ when } E > 50 \text{ eV and beam size < 100 } \mu \text{m}$

High-Resolution Time-of-Flight Analyzer (ArToF10k)

Ovsyannikov et al., JESRP 191, 92 (2013)

60° ToF @ Soft X-Ray Femto Slicing Beamline of BESSY II

Kühn et al., JESRP 224, 45 (2018)

TR-ARPES with ArToF10k Using XUV Pulses @ MIT

Gedik group, Nat. Comm. 10, 1038 (2019)

TR-ARPES with ArToF10k Using XUV Pulses @ MIT

Gedik group, Nat. Comm. 10, 1038 (2019)

photon energy: 24–33 eV photon flux: 10⁸ – 10⁹ photons/sec @ 30 eV repetition rate: 30 kHz time resolution: 200 fs energy resolution: 30 meV @ 33 eV

$Bi_2Sr_2CaCu_2O_{8+\delta}$

SP-HR-PEkM @ MPI Halle

Tusche, Krasyuk, Kirschner, Ultramicroscopy 159, 520 (2015)

1st design: Omicron+Focus & MPI Halle, Krömker et al., RSI 79, 053702 (2008)

SP-HR-PEkM system

k-microscope optics

To take whole photoelectrons, apply high voltage cf. ±15°: 3.4%, ±30°: 13.4%
simulation with beam size 100 μm, E_{kin} = 16 eV, E_p = 30 eV
energy filter by two HDAs → same entrance and exit images by 1/r potential symmetry

SP-HR-PEkM @ MPI Halle

Tusche, Krasyuk, Kirschner, Ultramicroscopy 159, 520 (2015)

SP-HR-PEkM @ MPI Halle

Tusche, Krasyuk, Kirschner, Ultramicroscopy 159, 520 (2015)

ToF-PEkM for 3D Band Mapping @ PETRA III, DESY

Medjanik et al., Nat. Mater. 16, 615 (2017)

k-resolution: 0.01 Å⁻¹ energy resolution: ~55 meV @ 350 - 1200 eVspatial resolution: 50 nm

3D band structure of W(110) taken within 3 h!

Now available at SPECS GmbH with a spin filter

TR-ToF-PEkM with 1 MHz-RR Table-Top EUV

Mathias group @ Göttingen, RSI 91, 063905 (2020)

photon flux: 2.7 x 10^{12} /s $\rightarrow 8.5 \times 10^{3}$ /pls (0.3% reduction due to Al filter) $\rightarrow > 1$ photoelectron/pls bandwidth: 140 meV

TR-ToF-PEkM with 1 MHz-RR Table-Top EUV

Mathias group @ Göttingen, RSI 91, 063905 (2020)

-2

-2

-1

k_x [1/Å]

2

-2

E-E_F [eV]

Limitations of PEkM

Only one photoelectron detection per laser pulse due to DLD deadtime

- (1) multiple DLDs
- (2) RR increasing

Lifetime of MCP = 5000 h @ 10⁶ cps for uniform detection but inhomogeneous degradation

Space-charge effects due to low-energy photoelectrons before entering into the electrostatic lens system

TR-ToF-PEkM @ FLASH/PG2 FEL, DESY

Kutnyakhov et al., RSI 91, 013109 (2020)

TR-ToF-PEkM @ FLASH/PG2 FEL, DESY

Kutnyakhov et al., RSI 91, 013109 (2020)

 $\Delta E \sim 130 \text{ meV}$ $\Delta k \sim 0.06 \text{ Å}^{-1}$ $\Delta t \sim 150 \text{ fs}$

Poorer than homelab due to space-charge effects

TR-µ-ToF-PEkM @ Okinawa

Dani group @ OIST, Science 370, 1199 (2020)

Metis 1000, SPECS GmbH $\Delta E = 30 \text{ meV}$ $\Delta k = 0.01 \text{ Å}^{-1}$ $\Delta t = 165 \text{ fs}$

TR-µ-ToF-PEkM @ Okinawa

Dani group @ OIST, Science 370, 1199 (2020)

Observation of ultrafast population dynamics of K- & Q-valley excitons

TR-µ-ToF-PEkM @ Okinawa

Dani group @ OIST, Science 370, 1199 (2020)

resonant pump hv = 1.72 eV

above-gap pump hv = 2.48 eV

SPECS METIS 1000

https://www.specs-group.com/nc/specs/products/detail/metis-1000

SPECS METIS 1000 Specifications

METIS		Delay Line Detector	
Mounting Flange	DN150CF	max. permanent mea-	> 8x10 ⁶ cps (10 ⁸ tolerant)
Start Energy	0-2000 eV	surement count rate	
Energy Resolution	<15 meV	Count Rate Linearity Range	> 2x10 ⁶ cps
Angular Resolution	<0.1°	Typical Time Resolution (position integrated)	< 180 ps < 110 ps (best achieved)
k-Resolution	< 0.01 Å ⁻¹		
Lateral Resolution (PEEM-mode)	< 50 nm	Start Repetition Rate	≤ 150 MHz; ≤ 9 MHz without prescaler
Lateral Resolution (ARPES-mode)	< 2 µm	Typical Lateral Reso- lution	< 100 µm < 50 µm (best achieved)
Acceptance Angle	up to +-90°	Multi Hit Designs	optional, up to <u>30 simulta-</u> neous hits (with multianode detector layout)
Exctractor Voltage	up to 29 kV		
Field Apertures	200 μm down to 2 μm (in sample coordinates)	All de la	

https://www.specs-group.com/fileadmin/user_upload/products/brochures/SPECS_Brochure-METIS_RZ_web.pdf

t = -500 fs

200 fs

d

