Through the Lens of a Momentum Microscope: Viewing Light-Induced Quantum Phenomena in 2D Materials Ouri Karni, Iliya Esin, and Keshav M. Dani, Adv. Mater. **34**, 2204120 (2022)

Toward Higher E/ΔE in Electron Analyzer

Concentric hemispherical analyzer (CHA) has been preferred.

perfect control of electrostatic lens system (SIMION+PC?)

SES-200: Mårtensson et al., JESRP **70**, 117 (1994)

Ovsyannikov et al., JESRP **191**, 92 (2013)

electrostatic lens aberration correction + high spatial resolution in electron detector

Toward Higher E/ΔE in Electron Analyzer

Stable electronic ground (< 0.1 meV) is essential.

High energy resolution requires low temperature < 10 K (300 K \sim 25 meV \rightarrow 0.1 eV width in Fermi function)

ARPES in Old Days

rotate sample or analyzer

Takahashi group, PRB **58**, 7675 (1998)

2 day measurements!

VSW Ltd. Phys. Today '83

Two-Dimensional Electron Detector: MCP + Phosphor Screen + CCD

MCP size: up to ϕ 77 mm by Hamamatsu https://www.hamamatsu.com up to 20×20 cm² by Incom, Inc. https://incomusa.com spatial resolution ~20 μm

phosphor screen $P43(Gd_2O_2S:Tb)$:

best efficiency, $\lambda = 545$ nm (green), spatial resolution: ~100 μm (~300 ch for ϕ 40 MCP $\rightarrow \Delta\theta \sim 0.1^{\circ}$ for $\theta \sim \pm 15^{\circ}$) 10% decay time 1 ms \rightarrow not suitable for time-resolved measurements

Two-Dimensional Electron Detector: MCP + DLL

multi-hit design

Active diameter: 10 – 150 mm Spatial resolution: down to 30 μm Multi-Hit designs: > 10 hits Time resolution: < 200 ps Repetition rate: 9 MHz cf. Ti:Sapphire fs laser up to 80 MHz single-bunch storage ring \sim 1 MHz

https://www.surface-concept.com/downloads/info/delaylinedetectors.pdf

Effects of Finite Δk₁ in ARPES Even in Quasi-2D System Leem et al., PRL 100, 016802 (2008)

In most ARPES, $\Delta k_{\perp} > 0.1$ Å⁻¹ due to photoelectron escape depth

graphite

Small beam size is essential for Van der Waals 2D materials.

Importance of Δk_{\parallel} in ARPES especially for Dirac fermions HD Kim unpublished

High Δk_{\parallel} is essential to probe Dirac/Weyl fermions. Single Dirac energy can be measured only in STM.

Multichannel Spin-Polarization Detector @ Mainz Kolbe et al., PRL 107, 207601 (2011)

Using W(100) or Au/Ir(100) spin-filter crystal, specular geometry spin-polarized low-energy electron diffraction k_{\parallel} conservation \rightarrow 2D lateral image preservation 4-bundle electron-optical simulation optimum working point: scattering energy 26 eV reflectivity $R = 1.2\%$ asymmetry $S = 0.43$

Multichannel Spin-Polarization Detector @ Mainz Kolbe et al., PRL 107, 207601 (2011)

spin polarization

$$
P_{ij} = \frac{A_{ij}}{S_{ij}} = \frac{I_{ij}^{+} - I_{ij}^{-}}{I_{ij}^{+} + I_{ij}^{-}} \frac{1}{S_{ij}}
$$

Au-Passivated Ir(100) Spin Filter by MPI Halle Kirschner group, PRB 88, 125419 (2013)

surface degradation of W(100) spin filter

Lofink et al., RSI **83**, 023708 (2012)

Photoemission Momentum Microscopy (PEkM)

Measure ARPES in 2D k-space

(1) High-Resolution Time-of-Flight Analyzer + MCP + DLL 2D k-space image + spectrum (pulsed photon source (pulse width < 10 ps))

(2) PEEM Electrostatic Lens + 2 CHA + MCP + Phosphor Screen + CCD Camera 2D k-space image with fixed energy (CW or pulsed photon source)

(3) PEEM Electrostatic Lens + High-Resolution Time-of-Flight Analyzer + MCP + DLL

High-Resolution Time-of-Flight Analyzer (ArToF10k) Ovsyannikov et al., JESRP 191, 92 (2013)

$$
v = \sqrt{2E/m} = \sqrt{\frac{2E \times 1.6 \times 10^{-19} \text{ J/eV}}{9.11 \times 10^{-31} \text{ kg}}} = 0.6 \times 10^6 \sqrt{E(\text{eV})} \text{ m/s}
$$

$$
E = \frac{1}{2}m(d/t)^{2} \longrightarrow |E/\Delta E| = |t/2\Delta t|
$$

drift energy $E_d = 3$ eV, $v = 10^6$ m/s, 1 m drift \rightarrow 1 µs

time resolution of electronics and detector \sim 0.1 ns \rightarrow E/ Δ E = 5,000

 $\Delta E = \sqrt{(\alpha E^{3/2} \Delta t)^2 + (\beta E \Delta d^{\gamma})^2} \longrightarrow \Delta E = \alpha E^{3/2} \Delta t$ when E > 50 eV and beam size < 100 µm

High-Resolution Time-of-Flight Analyzer (ArToF10k) Ovsyannikov et al., JESRP 191, 92 (2013)

60° ToF @ Soft X-Ray Femto Slicing Beamline of BESSY II Kühn et al., JESRP **²²⁴**, 45 (2018)

TR-ARPES with ArToF10k Using XUV Pulses @ MIT Gedik group, Nat. Comm. **10**, 1038 (2019)

TR-ARPES with ArToF10k Using XUV Pulses @ MIT Gedik group, Nat. Comm. **10**, 1038 (2019)

photon energy: 24–33 eV photon flux: $10^8 - 10^9$ photons/sec @ 30 eV repetition rate: 30 kHz time resolution: 200 fs energy resolution: 30 meV @ 33 eV

$Bi₂Sr₂CaCu₂O_{8+δ}$

SP-HR-PEkM @ MPI Halle Tusche, Krasyuk, Kirschner, Ultramicroscopy **¹⁵⁹**, 520 (2015)

1st design: Omicron+Focus & MPI Halle, Krömker et al., RSI **79**, 053702 (2008)

SP-HR-PEkM system **K-microscope optics**

To take whole photoelectrons, apply high voltage cf. ±15°: 3.4%, ±30°: 13.4% simulation with beam size 100 μm, $E_{kin} = 16$ eV, $E_p = 30$ eV energy filter by two HDAs \rightarrow same entrance and exit images by 1/r potential symmetry

SP-HR-PEkM @ MPI Halle Tusche, Krasyuk, Kirschner, Ultramicroscopy **¹⁵⁹**, 520 (2015)

SP-HR-PEkM @ MPI Halle Tusche, Krasyuk, Kirschner, Ultramicroscopy **¹⁵⁹**, 520 (2015)

ToF-PEkM for 3D Band Mapping @ PETRA III, DESY Medjanik et al., Nat. Mater. **16**, 615 (2017)

k-resolution: 0.01 \AA^{-1} energy resolution: ~55 meV @ 350 – 1200 eV spatial resolution: 50 nm $hv = 357 eV$ \mathbf{a}

3D band structure of W(110) taken within 3 h!

Now available at SPECS GmbH with a spin filter

TR-ToF-PEkM with 1 MHz-RR Table-Top EUV Mathias group @ Göttingen, RSI **91**, 063905 (2020)

photon flux: 2.7×10^{12} /s \rightarrow 8.5 x 10³/pls (0.3% reduction due to Al filter) \rightarrow > 1 photoelectron/pls bandwidth: 140 meV

TR-ToF-PEkM with 1 MHz-RR Table-Top EUV Mathias group @ Göttingen, RSI **91**, 063905 (2020)

 -2

 -2

 -1

 k_x [1/ $\rm \AA$]

 $\overline{2}$

 -2

 $E-E_F$ [eV]

Limitations of PEkM

Only one photoelectron detection per laser pulse due to DLD deadtime

- (1) multiple DLDs
- (2) RR increasing

Lifetime of MCP = 5000 h \textcircled{a} 10⁶ cps for uniform detection but inhomogeneous degradation

Space-charge effects due to low-energy photoelectrons before entering into the electrostatic lens system

TR-ToF-PEKM @ FLASH/PG2 FEL, DESY Kutnyakhov et al., RSI 91, 013109 (2020)

TR-ToF-PEKM @ FLASH/PG2 FEL, DESY Kutnyakhov et al., RSI 91, 013109 (2020)

 $Δk ~ 0.06$ Å⁻¹ $\overline{\Delta t} \sim 150$ fs

Poorer than homelab due to space-charge effects

TR-μ-ToF-PEkM @ Okinawa Dani group @ OIST, Science **370**, 1199 (2020)

Metis 1000, SPECS GmbH $\overline{\Delta E} = 30$ meV $\overline{\Delta k} = 0.01 \text{ Å}^{-1}$ $\overline{\Delta t}$ = 165 fs

TR-μ-ToF-PEkM @ Okinawa Dani group @ OIST, Science **370**, 1199 (2020)

Observation of ultrafast population dynamics of K- & Q-valley excitons

TR-μ-ToF-PEkM @ Okinawa Dani group @ OIST, Science **370**, 1199 (2020)

resonant pump hv = 1.72 eV above-gap pump hv = 2.48 eV

SPECS METIS 1000

https://www.specs-group.com/nc/specs/products/detail/metis-1000

SPECS METIS 1000 Specifications

https://www.specs-group.com/fileadmin/user_upload/products/brochures/SPECS_Brochure-METIS_RZ_web.pdf

 $t = -500$ fs

 0 fs

200 fs

d

