2023. 2. 9. Jae Hyuk Lee

Reaction Dynamics Studied *via* femtosecond X-ray Liquidography at XFELs

Cacl

Cat C6H6-CH3+HCL

CHO

manse from morene freeh

約日日

Diffraction

Figure 2.8 ► Sphere (cross-section, on left) and its diffraction pattern (right). Images for Figs. 2.8–2.11 were generously provided by Dr. Kevin Cowtan.

Complex Object

Figure 2.10 > A planar hexagon of spheres (left) and its diffraction pattern (right).

Figure 2.11 Lattice of hexagons (left) and its diffraction pattern (right). If you look at the pattern and blur your eyes, you will see the diffraction pattern of a hexagon. The pattern is that of the average hexagon in the real lattice, but it is sampled at the reciprocal lattice points.

Single

*	*		+	
*				
*				
*			-	

Figure 2.9 Lattice of spheres (left) and its diffraction pattern (right). If you look at the pattern and blur your eyes, you will see the diffraction pattern of a sphere. The pattern is that of the average sphere in the real lattice, but it is sampled at the reciprocal lattice points.

From "crystallography made crystal clear", Elsevier

$$\rho(\mathbf{x}) = \int A(\mathbf{q}) e^{i\mathbf{q}\cdot\mathbf{x}} \, \mathrm{d}v_{\mathbf{q}} \qquad \qquad A(\mathbf{q}) = \int \rho(\mathbf{x}) e^{-i\mathbf{q}\cdot\mathbf{x}} \, \mathrm{d}v_{\mathbf{x}}$$

$$A(\boldsymbol{q}) = \sum_{1}^{N} f_n \mathrm{e}^{-i\mathbf{q}\cdot\boldsymbol{x}_n}$$

$$S(\boldsymbol{q}) = |A(\boldsymbol{q})|^2$$

= $\sum_{1}^{N} f_n^2 + \sum_{n \neq n'} \sum f_n f_{n'} \cos(\boldsymbol{q} \cdot \boldsymbol{x}_{nn'})$

$$S(\boldsymbol{q}) = |A(\boldsymbol{q})|^2$$

= $\iint \rho(\boldsymbol{u})\rho(\boldsymbol{u} + \boldsymbol{x})e^{-i\boldsymbol{q}\cdot\boldsymbol{x}} dv_{\boldsymbol{x}} dv_{\boldsymbol{u}}$
= $\int P(\boldsymbol{x})e^{-i\boldsymbol{q}\cdot\boldsymbol{x}} dv_{\boldsymbol{x}}$
where $P(\boldsymbol{x}) = \int \rho(\boldsymbol{u})\rho(\boldsymbol{u} + \boldsymbol{x}) dv_{\boldsymbol{u}}$

Diffraction by randomly oriented object

T.K. Kim, *et al.*, *ChemPhysChem* 2009, 10, 1958 – 1980

Diffraction by randomly oriented object

$$S(q) =$$

$$\sum_{i} N_{i}f_{i}^{2}(q) + \sum_{i} \sum_{i \neq j} N_{i}N_{j}f_{i}(q)f_{j}(q) \int_{v} 4\pi r^{2}\rho_{0}(g_{ij}(r) - 1)\frac{\sin qr}{qr} dr$$

$$\Delta S(q, t) = S^{\text{on}}(q, t) - S^{\text{off}}(q)$$

$$= \Delta S_{\text{solute}} + \Delta S_{\text{cage}} + \Delta S_{\text{solvent}}$$

$$= \Delta S_{\text{sol-rel}} + \Delta S_{\text{solvent}}$$
a)
$$\int_{0}^{1.5} \int_{0}^{1.5} \int_{0}^{$$

0.0

12

r/Å →

20

-1x10⁵

T.K. Kim, et al., ChemPhysChem 2009, 10, 1958 – 1980

 $q/Å^{-1} \rightarrow$

Static vs transient Scattering intensity from liquid

T.K. Kim, *et al.*, *ChemPhysChem* 2009, 10, 1958 – 1980 H. Ihee, *et al.*, *Science* 2005, 309, 1223-1227

E. Biasin, et al., J. Synchrotron Radiation 2018, 25, 306-315

Reaction Dynamics via FXL at XFELS

Bond cleavage/formation

Charge distribution and electron transfer

Orientational dynamics

Solvation dynamics

Coherent nuclear wavepacket dynamics

Protein structural dynamics

Bond cleavage/formation

• $[Au(CN)_2]_3$ in water

J. G. Kim, et al., Nature 2020, 582, 520-524

Bond cleavage/formation

- I_3^- in methanol
- Solvent dependent asymmetric bent structure

J. Heo, et al., Nature Communications 2022, 13, 522

Charge distribution and electron transfer

- [(bpy)₂¹Ru^{II}(tpphz)¹CO^{III}(bpy)₂]⁵⁺ in acetonitrile
- TOAS, TR-XES, FXL

SACLA

 $[^{1}Ru^{||}=^{1}Co^{||}(LS)] + hv (<50 \text{ fs}) \rightarrow [^{2}Ru^{||}(=)Co^{||}(LS)] (490 \text{ fs by optical TA}) \rightarrow [^{2}Ru^{||}=^{2}Co^{||}(LS)] (1.9 \text{ ps by XES})$ $\rightarrow [^{2}Ru^{||}=^{4}Co^{||}(HS)]$

S. E. Canton, et al., Nature Communications 2015, 6, 6359

Charge distribution and electron transfer

• I_3^- in methanol

J. Heo, et al., Nature Communications 2022, 13, 522

Orientational dynamics

- $[Au(CN)_2]_3$ in water vs heating dye in water
- Isotropic/anisotropic signal analysis

J. G. Kim, et al., J. Phys. B: At., Mol. Opt. Phys., 2015, 48, 244005

Orientational dynamics

Solvation dynamics

Fe^{||}Ru^{|||} → Fe^{|||}Ru^{||}

- Fe K β XES \rightarrow Fe oxidation state/spin state
 - → MMCT lifetime 62 fs
- E. Biasin, et al., Nature Chemistry, 2021, 1038

Non-equilibrium MD simulation

- 0.1 Å solvent shell expansion (2 Å/ps)
- Coherent (180 fs) translational motion
- → MMCT weakened H-bond interaction (recovery upon BET)

Coherent nuclear wavepacket dynamics

• [Pt₂(P₂O₅H₂)₄]⁴⁻ in water

K. Haldrup, et al., PRL, 2019, 122, 063001

Coherent nuclear wavepacket dynamics

• $[Au(CN)_2]_3$ in water

c Ground-state wavepacket

Protein structural dynamics

• Photosynthetic reaction center

D. Arnlund, et al., Nature Methods 2014, 11 923-927

Protein structural dynamics

• Homodimeric hemoglobin (Hbl)

Heme-heme distance shortening

LCLS

Y. Lee, et al., Nature Communications 2021, 12 3677

b

 $\Delta S(q, t)$

Summary and Outlook

- fs-TRXL (fs-time-resolved x-ray liquidography)
 - Sub-angstrom structural sensitivity
 - Femtosecond time resolution
 - Reaction dynamics: structure changes in non-equilibrium state
- Challenges
 - Anisotropic responses of solvent cages
 - Data analysis based on the independent atomic models
 - Extend the research area to wider target system
 - Photo-caging, T-jump, *insitu/operando* experiment
 - Improvement sample injection
 - System containing no/less heavy atoms
 - MHz operation for enough S/N ratio
 - Expend max. q (using high energy X-ray)

Impressions

- Improvement in temporal resolution, stability of sample jet: Observing coherent vibration
- Expand sample environment: SAXS/WAXS for protein in water
- Multiplexing measurement
 - FXL + TR-XES
 - FXL / TR-XAS/XES / optical-TA