

Using light to generate order in an exotic material

Physics experiment with ultrafast laser pulses produces a previously unseen phase of matter.

David L. Chandler | MIT News Office November 11, 2019

An artist's impression of a light-induced charge density wave (CDW). The wavy mesh represents distortions of the material's lattice structure caused by the formation of CDWs. Glowing spheres represent photons. In the center, the original CDW is suppressed by a brief pulse of laser light, while a new CDW appears at right angles to the first.

Image: Alfred Zong

https://news.mit.edu/2019/light-orders-exotic-material-1111

TeraHertz Time-Domain Spectroscopy

Members

- 1 Professor
- 4 Postdocs
- 11 Graduate students

https://doi.org/10.1038/s41567-019-0705-3

Light-induced charge density wave in $LaTe₃$

Pablo Jarillo-Herrero[®], Ian R. Fisher^{4,5,6}, Xijie Wang[®] and Nuh Gedik^{®1*}

When electrons in a solid are excited by light, they can alter the free energy landscape and access phases of matter that are out of reach in thermal equilibrium. This accessibility becomes important in the presence of phase competition, when one state of matter is preferred over another by only a small energy scale that, in principle, is surmountable by the excitation. Here, we study a layered compound, LaTe₂, where a small lattice anisotropy in the a-c plane results in a unidirectional charge density wave (CDW) along the c axis^{1,2}. Using ultrafast electron diffraction, we find that, after photoexcitation, the CDW along the c axis is weakened and a different competing CDW along the *a* axis subsequently emerges. The timescales characterizing the relaxation of this new CDW and the reestablishment of the original CDW are nearly identical, which points towards a strong competition between the two orders. The new density wave represents a transient non-equilibrium phase of matter with no equilibrium counterpart, and this study thus provides a framework for discovering similar states of matter that are 'trapped' under equilibrium conditions.

Competition or cooperation between proximal phases

- $-$ ³He: FM spin fluctuations vs p-wave superfluidity
-
-
- - \rightarrow mesoscopic phase separation when ΔE ≤ T

Uehara et al., Nature 399, 560 (1999)

What is a charge density wave (CDW)?

Usually, conduction electrons in a solid are in a quantum liquid state., i.e., spatially homogeneous.

Other mechanisms for CDW

※ Excitonic insulator or band-type Jahn-Teller mechanism

X. Zhu et al., PNAS 112, 2367 (2015)

CDW without FSN

※ Saddle point @ EF in quasi-2D materials (VHS)

$$
\epsilon(\mathbf{q}, \omega) = 1 + \chi(\mathbf{q}, \omega) = 1 - V_{\mathbf{q}} \sum_{\mathbf{k}} \frac{n_{\mathbf{k} + \mathbf{q}} - n_{\mathbf{k}}}{\hbar \omega + E_{\mathbf{k} + \mathbf{q}} - E_{\mathbf{k}}}
$$

$$
\sum_{\mathbf{k}} \longrightarrow \int dED(E)
$$

※ Different from charge order caused by nnb Coulomb repulsions not related with phonons , La_{0.5}Ca_{0.5}MnO₃, etc.

※ None of the before, still unknown

Methods

Sample preparation:

Mechanical exfoliation down to 60 nm checked by AFM,

then transferred to 10-nm-thick $Si₃N₄$ window

ethods
 Sample preparation:

Mechanical exfoliation down to 60 nm checked by AFM,

then transferred to 10-nm-thick Si_3N_4 window
 MeV UED @ SLAC:

pump laser: 800 nm, 80 fs Ti:sapphire laser, incidence angle

prob **hods**
mple preparation:
Mechanical exfoliation down to 60 nm checked by AFM,
then transferred to 10-nm-thick Si₃N₄ window
eV UED @ SLAC:
pump laser: 800 nm, 80 fs Ti:sapphire laser, incidence angle 5°, 500 x 500 μm² probe e- -beam: 3.1 MeV, 180 Hz, 90 x 90 μm2 beam size on a sample (FWHM) **comple preparation:**

Mechanical exfoliation down to 60 nm checked by AFM,

then transferred to 10-nm-thick Si₃N₄ window
 eV UED @ SLAC:

pump laser: 800 nm, 80 fs Tisapphire laser, incidence angle 5°, 500 x 500 µm **chods**
 Chods
 Chodia
 Chodia
 Chodia
 Chodia
 Chodia
 Chodia
 Chodia
 Chodia
 Chodia
 CHOD
 **CODIA

PODD**
 CODIA
 CODIA
 CODIA
 CODIA
 CODIA
 CODIA
 CODIA
 COD
 CODIA
 CODIA
 C mple preparation:

Mechanical exfoliation down to 60 nm checked by AFM,

then transferred to 10-nm-thick Si_sN₄ window

eV UED @ SLAC:

pump laser: 800 nm, 80 fs Tisapphire laser, incidence angle 5°, 500 x 500 μm² be **eV UED @ SLAC:**

pump laser: 800 nm, 80 fs Ti:sapphire laser, incidence angle 5°, 500 x 500 µm² beam size

probe e-beam: 3.1 MeV, 180 Hz, 90 x 90 µm² beam size on a sample (FWHM)

detector: P43 phosphor screen for el

keV UED @ homelab:

probe e-beam: photoelectron by 4th harmonic (260 nm) laser, 26 kV DC acceleration, 270 x 270 μm² beam size on a sample (FWHM)

detector: Al-coated P46 phosphor screen, CCD (PI-MAX II)

Ultrafast dynamics of CDW peaks of LaTe₃

Perfect anti-correlation between a-CDW and c-CDW intensity changes
decay time $\tau_a \approx$ recovery time $\tau_c \rightarrow$ same mechanism & phase competition decay time $\tau_a \approx$ recovery time $\tau_c \rightarrow$ same mechanism & phase competition

Transient nature of q_{a} in LaTe $_3$ different from ground state q_{a} in other RETe $_3$

If c-CDW melts, gap closing causes competition .

Origin of transient CDW: topological defect/anti-defect pair generation c-CDW is topologically inhibited, which allows a-CDW.

Ginzburg-Landau free energy density

$$
\mathcal{F} = r_c |\psi_c|^2 + \frac{\beta_c |\psi_c|^4}{2} + \kappa_c |\nabla_r \psi_c|^2 + r_c |\psi_c|^2 + \frac{\beta_c |\psi_c|^4}{2} + \kappa_c |\nabla_r \psi_c|^2 + \eta |\psi_c|^2 |\psi_a|^2
$$

Minimize
$$
\int d^2 \mathbf{r} \mathcal{F}(\mathbf{r})
$$

$$
\rightarrow -\kappa_c \nabla_r^2 \psi_c + r_c \psi_c + \beta_c |\psi_c|^2 \psi_c + \eta |\psi_a|^2 \psi_c = 0
$$

$$
-\kappa_a \nabla_r^2 \psi_a + r_a \psi_a + \beta_a |\psi_a|^2 \psi_a + \eta |\psi_c|^2 \psi_a = 0
$$
by putting
$$
\psi_c(r, \phi) = \psi_c^\infty f(r) e^{im\phi}
$$
 and
$$
\psi_a(r, \phi) = \psi_a^\infty g(r)
$$