

# 3HC parameters and Bunch Lengthening of PLS-II

Jun-hyoung Kim DANE, POSTECH 08/13/2024



## Outline

- 1. Introduction to 3HC
- 2. RF parameters of PLS-II
- 3. Hamiltonian
- 4. Phase-space diagram
- 5. Bunch lengthening in PLS-II
- 6. Further research
- References



# **1. Introduction to 3HC**

 Harmonic cavity can <u>improve the beam quality through bunch size lengthening</u> which includes providing <u>Landau damping</u>, suppressing <u>coupled bunch instability</u> and <u>microwave instability</u>, enhancing the <u>beam current per bunch</u> besides the <u>lifetime improvement</u>. [Hou]







#### Nominal parameters

#### **Optimized 3HC parameters**

| Harmonic number                 | h = 470                                | Com aleman and a lease | $\phi_{1s} = 152.21^{\circ}$ |
|---------------------------------|----------------------------------------|------------------------|------------------------------|
| RF frequency                    | $f_{\rm RF} = 499.9742 \; {\rm MHz}$   | Synchronous phase      | $\phi_{2s} = 170.04^{\circ}$ |
| Revolution angular<br>frequency | $\omega_0 = 6.6839 \text{ MHz}$        | Voltage ratio          | r = 0.30                     |
| Phase slip factor               | $\eta \approx \alpha_{\rm c} = 0.0013$ | Harmonic Voltage       | $V_2 = 1.35 \text{ MV}$      |
| Total electron<br>energy loss   | $U_0 = 1242.2 \text{ keV}$             |                        |                              |
| Accelerating voltage            | $V_1 = 4.50 \text{ MV}$                |                        |                              |
| Synchronous phase               | $\phi_{0s} = 155.52^{\circ}$           |                        |                              |
| RMS bunch length                | 6 mm or 20.01 ps                       |                        |                              |



## 3. Hamiltonian



• Hamiltonian without 3HC in  $(\phi, \delta)$  phase space

$$\mathcal{H}(\phi,\delta) = \frac{1}{2}h\omega_0\eta\delta^2 + \frac{\omega_0eV}{2\pi\beta^2 E}[\cos\phi - \cos\phi_{\rm s} + (\phi - \phi_{\rm s})\sin\phi_{\rm s}]$$

• Hamiltonian without 3HC in  $\left(\tau = \frac{\phi - \phi_s}{h\omega_0}, \delta\right)$  phase space

$$\mathcal{H}(\tau,\delta) = \frac{1}{2}\eta\delta^2 + \frac{eV}{2\pi h\beta^2 E} \left[\cos(\omega_{\rm rf}\tau + \phi_{\rm s}) - \cos\phi_{\rm s} - \omega_{\rm rf}\tau\sin\phi_{\rm s}\right]$$

• Hamiltonian with 3HC in  $(\tau, \delta)$  phase space

$$\mathcal{H}(\tau,\delta) = \frac{\eta}{2}\delta^2 + \frac{eV}{2\pi\hbar\beta^2 E} \left[\cos(\omega_{\rm rf}\tau + \phi_{\rm 1s}) - \cos\phi_{\rm 1s} - \frac{r}{m}\cos(m\omega_{\rm rf}\tau + \phi_{\rm 2s}) + \frac{r}{m}\cos\phi_{\rm 2s} + \omega_{\rm rf}\tau\sin\phi_{\rm 0s}\right]$$



## 4. Phase-space diagram



Hamiltonian



• Separatrix



# 5. Bunch lengthening in PLS-II

• Bunch length without 3HC  $\approx$  6 mm  $\times 10^{-4}$ 



$$\Delta t = 19.92 \text{ ps}, \qquad \delta_{\max} = 0.059\%$$

• Bunch length with 3HC (maintaining  $\delta_{\max} = 0.059\%$ )



 $\Delta t = 125.96 \text{ ps}, \qquad l_b = 37.76 \text{ mm}$ 

Bunch lengthening factor = 6.3



# 6. Further Research

 However, 3HC will introduce significant beam loading effects due to operation with a nonuniform filling pattern. This means that the cavity will have a unique influence on each bunch in addition to the same influence on all bunches in a bunch train, which makes the bunches have different motion modes. [Zhou]



Image adopted from Ref. [Liu]

DANE

Figure 3: Bunch lengths along the bunch train for different Image adopted fill patterns.



#### 6. Further Research



FIG. 11. (Color) rms bunch length along the bunch train for several 3HC tuning for uniform filling;  $I_{\text{beam}} = 315 \text{ mA}$ , E = 2.0 GeV.

Images adopted from Ref. [Penco]

O DAN



## 6. Further Research

• Bunch overstretching





$$U(\phi) = \frac{1}{V_2 \cos \phi_{1s}} \int_0^{\phi} [V(\phi) - U_0] d\phi$$

FIG. 15. (Color) Nominal charge density in the bunch in function of the 3HC detuning, calculated in uniform filling and at 315 mA by using formula (9).

Images adopted from Ref. [Penco]



#### References



- [Zhou] Yimei Zhou, *et al.* Experimant verification and analysis of the beam loading effect based on precise bunch-by-bunch 3D position measurement, *Nucl. Instrum. Methods Phys. Res., Sect. A*, 168201 1051 (2023)
- [Liu] Z. –K. Liu, *et al.*, Determination of the Electron Bunch Length with Third Harmonic Cavity for the Taiwan Photon Source, in *Proceedings of the 9<sup>th</sup> International Particle Accelerator Conference, IPAC2018, Vancouver, BC, Canada, 2018*
- 3. [Penco] Giuseppe Penco, Michele Svandrlik, Experimental studies on transient beam loading effects in the presence of a superconducting third harmonic cavity, *Phys. Rev. ST Accel. Beams* **9**, 04401 (2006)

