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L .
Conventional magnet and Schwartz transformation i DAN E i

From Maxwell’s equations in free space

Lorentz gauge V-A=0
VXxB=Vx(VxA)=V(V-A)—V?A=0 > VZA =0,

V.-B=V-(-V®)=-V’d=0 - V:d=0.

and assuming the transverse magnetic field B = (Bx, B, ,0)and A = (0,0,4,) s.t.

B, _ 94, dB, =_6AZ
ay an 0x

with proper boundary condltlon in polar coordinates as

d(r,0) = z r"*(a,, cosnf + b, sinnf) = z d, (1.

n=1 n=

we can solve the Laplace’s equation for scalar potential

For each eigenmodes, we call normal 2n —pole magnet when a,, = 0 and skew 2n —
pole magnet when b,, = 0. The only difference between normal magnet and skew

. . Y[ .
magnet is rotation of = rad, since
/[

—) = anr"sinn(H + n) -+ (2) .

a,r* cosnf = a,,r" sin (n@ +
n n 2 2n
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Conventional magnet and Schwartz transformation Eﬁg DA N E )

Normal R-Dipole Normal R-Quadrupole Normal R-Sextupole Normal R-Octupole

| 'l

i
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- 0 1 x

S’

D, normal = b7 sinnf = a,r"sinnf,

[
|
|
|
|
|
|

D, skew = ApT"F cOsSNO

Skew R-Dipole

B, = —na,r" (sinnd £ + cosno 9)

= B,(sinn@ f + cosnd 6),

an—an

Take derivatives of B, s until constant : g™ 1 = 1 -nla,
e.g. Taylor expansion of B, on the x — axis :
0B 1 0°B 1 03B
— 4 — 24 Y 3 4
By_By|y=o+6x _x-l_Z!ax2 SRECTRP x+ 00
y=0 y=0 y=0

1 1.2 1 .3 4
=Bo+gx+5gx +gg x°+0(x*).
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Conventional magnet and Schwartz transformation Eﬁg DA N E 5

)
(Appendix) Derivation of g (n = 2)
Ampere’s law fora > b > ¢ > a: integration path coil
b c a 1 b ned
fH-dl='[H0-dl+fHFe-dl+jH-dl=— B-dl = NI, |\
a b c Ho Jq ,” E;\\
Jf! R ‘\
Ampere’slaw fora - b - d - a: | | c -
b d a \al d ) o x
%B-dlsz-dl+'[Bydy+fodx=0 S L'\/_J
a b d Sl
b a d a b R cos% R sin%
—>jB-dl:—f Bxdx—fody:jBxdx+jBydy=j B, | dx+f By| dy
a d b a d 0 y=0 0 x=d
R cos% R sinﬁ
. j By| dx +f B, | _ dy = poNI
0 y=0 0 X=R Cos5
e.g. Quadrupole magnet (n = 2)
=R R 1 2uonl
V2 V2 Ho
HoNI = f gy| dx + f gX| . dy =5gR? c 9 ="03
0 y=0 0 X=ER 2 R
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Conventional magnet and Schwartz transformation Eﬁg DA N E i

We can show that infinitesimal complex variables dz = dx + idy and dz* = dx — idy
are linearly independent, thereby the derivative of an analytic function f(z) = f(x + iy)

can be defined as

of of of .of f,.of of of
df —d +@dy 2<a—l@)dz+2<ax ay) z" —ad +£dz

o 10 190 d 19 1090

which means that i EE-I_Z_L@ and 9z 2 0x 2idy

The condition for being an analytic function is e 0, which is identical with

Cauch Ri ., du Odv dav_ auf @) = u(x,y) + iw(x)
auchy — Riemann equations — P ay an P 3y or f(z) =u(x,y) +iv(x,y).
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Conventional magnet and Schwartz transformation Eﬁg DA N E 7

Take f Hgto et i g=1V2f=0andfromV2f=V2u+iV2v we can say that an
9z 8979z 4 ' y y

analytic function satisfies the Laplace’s equation, with V2u = V2v = 0.

Also, we can show that Vu Vv are orthogonal by using Cauchy — Riemann equations,
therefore any analytic function corresponds to a solution of two — dimensional

boundary problem of Dirichlet type.

2, o) = A WY =C Assume that v(x, y) is the magnetic scalar potential,
Y el N s
—=(-—4+==—|w+iv) =——+i-—=—-B, —iB,
FAS

dz \20x 2idy dy  Ox

&/\S/ﬁ» 4 Therefore,

N7 7

i

77 4 X (df
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Conventional magnet and Schwartz transformation Eﬁg DA N E .

We can find that the physical meaning of u(x, y) is the vector potential A,, from

B - dv _du 04, 1B, dv _du 04,
¥ 0x dy Oy and Bx = dx dy 0y
Therefore we can define the complex potential fasf = A, +i®,, - (4).

From the fact that any analytic complex transformation including the finite number
of singularity preserves the angle (conformal), we can map the solution space of

Laplace’s equation V2 f = 0 into a upper half of new complex plane.

V1 V2
— B inp
Z1=hHe Z; = Zg
—
_ B i _..Bo
\nﬁ f'zlzrz (_zz r, e (_zz e
Xq X2
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Conventional magnet and Schwartz transformation Eﬁg DA N E .

We know that the magnetic field is constant in y —direction, so it is easy to find

potentials in z, plane: ®,, = —By and A, = —Bx (from Cauchy-Riemann equations).
Therefore the complex potential is f = —B(x + iy) = —Bz.

The generalization of previous transformation from z; plane to z, plane is known as

Schwartz transformation.

y1r

n
dz Qi
“t=c| [@-apm
i=1

dz,

, X
a; Ajtq 1
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Conventional magnet and Schwartz transformation Eﬁg DA N E .

For one ‘cell’ of conventional 2n—pole magnet, the Schwartz transformation

becomes

n
dz, c =-1 c %—1 1 "
—=(7z =0z o Ly = | — Zq .
de 2 2 2 nC 1

Therefore, the complex potential f which provides a homogeneous field in z, plane

can be described in z; planeas f = —Bz, = zit = Cpzit -+ (5).

~ (mo)r

. T
From Eq. (2), we can find the rotation transformation z — z; = ze'zn for the skew

multipole magnet. Hence fyew = Cpz1 = iCpz" - (6)

We can get the magnetic field, scalar and vector potential by Egs. (3) and (4).
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Conventional magnet and Schwartz transformation Eﬁg DA N E »

e.g. Quadrupole magnets (n = 2)

(a) Normal magnet
f = =Bz = Czf = Co(x1 + iy1)* = C(xf — y§ + 2ix1y7)
O, = Im f = 2C5x1 )1, A, =Re f = Co(x{ — y7)

d *
By +iB, = —i (d—;:) = —2iC,z{ = =2iC,(x; — iy,) = =2C,(y; + ixy), g=——=-2C,

(b) Skew magnet

1
fokew = 1C22% = iC(x% — y* + 2ixy) = gxy — igg(x2 —y?)

1
q)mzlmfskewz_zg(xz_yz)r A, = Re fokew = gXy

d £
B, +iB, = —i( f;;;”) = —i(2iCy2)" = gz*" = gx — igy
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Conventional magnet and Schwartz transformation Eﬁg DA N E 5

The scalar potential in polar coordinate Eq. (1) can be expressed by writing
z=reY and C, = b, + ia,, so that f = (b, + ia,)r"e™ and ®,, = Im f =
r*(a, cosnf + b, sinnf).

We can also find the vector potential without any calculation,

A, =Re f =r"(b,, cosnf — a, sinnfh).

This is because the vector potential = stream function in two dimenstion space.

* New type of magnet - multiple angle magnets?
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Symmetry Breaking in Transverse Beam Dynamics EE DAN E .

* Included in Dr. Ki Moon Nam'’s study shortly.

* Focused on the symmetry breaking via sextupole magnets and multiple-cell

symmetry breaking, for possible set of S, found by Mr. Youngmin Park.

18 T
. A(B) I-A(-B) | 3
I i By 1
B 5 ELEGANT
12 i
T ogtr - i ;i
6.5 | i
. A g = —0.58223
26 \/ a = 1245.7898
: = - 4
A: 0 515 52 53 5;:0 P m] 5:15 53 52 5120 * 3
B: S S; S,Sg ' Sy S; SgSs X x 10
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Symmetry Breaking in Transverse Beam Dynamics Eﬁg DAN E y

&V'VQ\

odd-cell symmetry breaking
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RF phase and voltage modulation Eﬁg DAN E .

1. RF phase modulation

h
The longitudinal Hamiltonian in normalied phase space (qb,? = — 1|/77| 6) with
S

stationary synchrotron motion, i.e. s = 0 is

1 _
Hy = EwovSPZ + wovs(1 — cos @) = woH, .

Consider the RF phase modulation as perturbation, i.e. H = H, + H;,
Hy = vyaP cos(vy0 + xo)

3
2

(2])% cosy + 2))

= Vv,a - cos 3y + -

cos(vi 0 + xo)

= Vma\/% [cos(¥ + vin0 + xo) + cos(ip — vin6 — xo)]

3
2

128
Therefore the RF phase error only generates the odd order of parametric resonance.

+vpa [cos(3Y + v, 6 + xo) + cos(BY — v — xo)] + -+
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RF phase and voltage modulation Eﬁg DAN E 6

—~

1 - L
s Homvg vt Z Vinfaies 1) T2{cos[(2k + 1) + v + xo] + cos[(2k + 1) + v + xol},
k=0

a a
_»fz =

v N

If phase modulation amplitude a is small enough, the dominant resonance is Dipole mode,

where f; =

which corresponds to the k = 0 mode and v, = vs.

y 1 vea 1
Transform the Hamiltonian of Dipole mode H = v ] — Evs]2 + %]2 cos(yp — vy, — xo) into

the resonance rotating frame (y, I) by the generating function F, (i, 1) = (Y —vy,0 — xo — m)I

dF, oF,

J=3p =h X T¥ P

. .~ O0F, 1 5 a 1
=}[+W=(V5—Vm)l—ﬁvsl +V5512COS)(
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RF phase and voltage modulation Eﬁg DAN E .

Vv
Fixed points can be obtained by solving g3 — 16 (1 — —m> g + 8a = 0,where y = 0,7 and

vS
g=+2lcosy.
3
When vy, < vpir = Vs [1 —— (4a)3] bifurcation tune,
8 1 ¢ 8 1 nf) 81<ﬂ€)
X) = ——Xx2CcoS—, x) =—=x2sin|——=] and (x) =—=x2sin|=+=
Ym Vpif 2 q L x\°
h =1-—, =1—-1——=—(4a)3, = tan~ — =1
where x ve Xpif » 6( a)3,and ¢ = tan -
Otherwise when vy, > vyif,
’ " 1-
3

1 £ \? 3 £ \3
ga(x) = —(4a)3 1_<E> +1] — 1_<E) -1
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RF phase and voltage modulation EE DA N E 18

6 C

5F =

tE ey,

3 oo/ (40)"

of =

1 f_ ,’ 13 _f

0 = Lo — 1

-5 0 5 10 —2 -1 0 1 2

T/ T X
The island tune
1

N[ =

3\ 2
4a

Vsa
29

Visland =

2 3
g g
”s(“ﬁ)‘”m (1‘@)
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RF phase and voltage modulation Eﬁg DAN E .

2. RF voltage modulation

AV

1
2 AV
WhenV —» V + AV, vg = vg (1 +7> X Vg (1 +ﬁ> = vs[1+ bsin(vy,6 + y)].

The perturbation Hamiltonian #; is then #; = v.b sin(vy,0 + x) (1 — cos ¢) .

Let y = 0 for convinience, then

H, = vsb sin(vy,0) z G,(Ne™ = v b sin(vy,6) z |G,, ()|t +¥n)

n=-—oo n=-—oo

= Vsb {lGO(I)l sin(vy,0) + z G (DI sin(vn8 + 1y + v,) + |G, (D] sin(v 6 — np — )]
n=1

=vsb ) 16y(DIsin(vmd — 1 — 1)

n=—oo

~ 1 =
P = v =g+ vh 2 G, (D] Sin(Vm — 1P — 1)

n=—oo
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RF phase and voltage modulation Eﬁg DAN E 2

Transform into the resonance rotating frame (1/5,]~) with F,(¥,]) = (1/) ——0+ Yk + Zk)]

k k
,,_an ~_aF2_ m 14
. OF T _Ymjy i
R = f]‘f+a—92_vs]__vs]2+Vsb|Gk(])|Sln( ¢—§>—7ml+ﬂ7c(1;¢:9)

— (Vs vm)] —ivsjz + vsb |G ()| cos kp + AK (], 4, 0)

~ V- 1 . - ~
Take average with respect to 6 gives (K) = (vs — ?m)] — EVSJZ + vsb|Gk (I)| cosky .

The resonance strength is the strongest in the lowest harmonic for a small action particle, since

|G, 4+2/Gn| ~ J. Thereby the k = 2 mode is dominant, which is Quadrupole mode.
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RF phase and voltage modulation Eﬁg DAN E )

Transform into the resonance rotating frame (1/5,]~) with F,(¥,]) = (1/) ——0+ Yk + Zk)]

k k
,,_an ~_aF2_ m 14
. OF T _Ymjy i
R = f]‘f+a—92_vs]__vs]2+Vsb|Gk(])|Sln( ¢—§>—7ml+ﬂ7c(1;¢:9)

— (Vs vm)] —ivsjz + vsb |G ()| cos kp + AK (], 4, 0)

~ YVml- 1 . - ~
Take average with respect to 6 gives (K) = (vs — %)] — EVSJZ + vsb|Gk (])| cosky .

The resonance strength is the strongest in the lowest harmonic for a small action particle, since

|G, 4+2/Gn| ~ J. Thereby the k = 2 mode is dominant, which is Quadrupole mode.

rPOSTELCH



RF phase and voltage modulation

% DANE

Fixed points for Quadrupole mode

cos 2y =1

cos 2Py = =1 : Jypp = 5

Jsrp = §

i

(21)"? sin(y—v,6/2)

Vm
1——|+2b
2v5>

0

2Vq

0

b
if vy, < 2vg +EVS

if v, = 2vq +§vS

( Vi _ b
8l1——)—2b |if vm<2vs—§vS

if 2vg 5 Vs < vy < 2V +§vS

[ 157263 Hz  1,,=526 Hz

[ f=263 Hz  1;,=490 Hz

-2 0

(20)"/% cos(y—v,0/2)
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RF phase and voltage modulation

& DANE

Island tune

TVs+/ 2bJspp % J = i 1 — XJsrp — Jurp

Visland — X4,
shan K(k) V2 Vx(Jsgp — Jurp)
3. Phase modulation can increase the beam lifetime

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 3, 050701 (2000)

Improvement in the beam lifetime by means of an rf phase modulation
at the KEK Photon Factory storage ring

Shogo Sakanaka,* Masaaki Izawa, Toshiyuki Mitsuhashi, and Takeshi Takahashi
Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi,
Ibaraki-ken, 305-0801 Japan
(Received 28 February 2000; published 10 May 2000)

In the 2.5-GeV Photon Factory storage ring at KEK, we have found that the beam lifetime can be
improved by modulating the phase of an rf accelerating voltage at a frequency of 2 times the synchrotron
oscillation frequency. By applying this phase modulation with a peak-to-peak amplitude of 3.2°, the
beam lifetime could be improved, typically, from 22 to 36 h under a beam current of about 360 mA.
At the same time, the longitudinal coupled-bunch instability could be considerably suppressed. The
improvement in the beam lifetime can be explained as an improved Touschek lifetime, which was
caused by a quadrupole-mode longitudinal oscillation of the stored bunches.

PACS numbers: 29.20.Dh, 29.27 Bd

Beam Current (mA)

9:00 - 10:00 p.m., June 7, 1999

L A L L
400 Beam Current .
[ 160
300 . )
i Lifetime '
3 (under phase modulation) _ 40
200 [ (no phase |
[ modulation) |
100 120
0 [ T T T U ST [ T T S TS T T Y T W W T M | ] 0
0 10 20 30 40 50 60

Time (minutes)
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Higher Harmonic Cavity and Bunch Lengthening EE DAN E )

---Vising|
-V, sin ¢y

V()

V (MV)

Bunch lengthening factor

1

0.\° 24 cosdys|t 1
hn) m2 —1cos¢ys| /o5
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BESSY VSR - Upgrade of BESSY Il Eﬁg DAN E .

Variable pulse length Storage Ring

* An important feature of future synchrotron sources will thus be the flexibility to tune
the beam parameters to the various user needs, while ideally maintaining a high

average flux.

* The world-wide unique feature of the BESSY VSR will be the simultaneous operation of
long and short pulses, both at high bunch current, while still providing the average
beam users have come to expect from 34 generation facilities. One may then store many
long bunches to provide high photon flux while only a few short-bunch buckets are

populated with high charge for short-pulse experiments.

* In this alternating bunch length schema, the impedance heating effects of the machine
can be avoided and the Touscheck loss rate can be limited since both effects are
strongly dependent on the total currents in the short bunches and these are only a

smaller fraction compared to the current in the long bunches.
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BESSY VSR - Upgrade of BESSY 11 Eﬁg DAN E 26

* This new operating mode is achieved by installing longitudinally focusing SRF
cavity systems of 1.5 GHz and 1.75 GHz in addition to NC 0.5 GHz RF system into
one of the low [ straights of the BESSY II ring.

* The two different frequencies cause a beating of the voltage creating fixed points
where the voltages add and others where they cancel. Short bunches are located at

the high-voltage gradient points and long bunches at the cancellation points.

* The transverse beam optics and emittance remains unchanged.
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BESSY VSR - Upgrade of BESSY 11

% DANE

- Overview of relevant BESSY I paramecters.

Parameter Value
Encrgv E 1.7GeV
Emittance € 5nm rad
Coupling 2%
Beam optics, DBA cells 2x8
Circumference 240m
Max. beam current [ 300 mA
Harmonic number A 400
RF frequency fr 500 MHz
RF sum voltage Vi; at 500 MHz 1.5MV
Landau cavities frequency 1.5 GHz
Landau cavitics suimn voltage 0.225 MV
Revolution frequency fo, 1.25 MHz
Momentum compaction factor a 7.3 x 1071
Relative natural energy spread, rms oy 7x 107!
Transversal tunes Q.. @, 17.85, 6.74
Synchrotron frequency f 7.6kHz *
Longitudinal radiation damping time 7. 81ms
Transverse radiation damping time 7, 161ms

* without Landau cavities

> 40F
=
—~ -
S, 20/
S
I
20/
-40E T T O ST B S SR
0 1 2
) Time / ns
Facility Peak Average Number Pulse
brilliance brilliance of bunches duration
ph/s/mrad?/mm?/0.1 %BW ps (rms)
(multi bunch curr.)
BESSY II
standard 6.1e21 4e19 (300 mA) 350 15
low a 1.9¢20 2.5el7 (15mA) 350 3
BESSY VSR
total varying 419 (300 mA) varying varying
std. long pulses  1.2e22 3.3e19 (248 mA) 150 15
std. short pulses 1.7e22 3.6el8 (27TmA) 150 1.1
long camshaft 3.95e22 1.3e18 (10mA) 1 27
short camshaft  5.1e22 117 (0.8 mA) 1 1.7
low o 2.2e21 1.2e17 (7.5mA) 150 0.3
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BESSY VSR - Upgrade of BESSY 11

&% DANE

* The key elements of BESSY VSR are SC cavities,

cooled down to 1.8 K and operating at two

different frequencies and voltage amplitude.

500 MHz, 1.5 MV
1.5 GHz, 20 MV
1.75 GHz, 17 MV
Sum

V/MV

1.95

200 205 210

t/ns

V/MV

500 MHz, 1.5 MV

—— 1.5 GHz, 20 MV
—— 1.25 GHz, 24 MV
—— Sum

0.8
1.90

195 200 205 210

t/ns

Figure 2.4: Voltages of the cavities in the close vicinity of the stable fix point
of the long bunch. Left: BESSY VSR standard setup with fi.» >
fseq. Right: Hypothetical setup with fi2 < fi,1 which leads to
limitation of the bucket by the additional unstable fixed points
(black dots) and very low RF acceptance.

mA

bunch current / mA

bunch current/

10

10

Cavity Frequency Integrated voltage Number of

f/GHz V/MV cavities
NC 0.5 1.5 4
SC, 1.5 20 2 x 5 cells
SC, 1.75 17.14 2 x 5 cells

E high current
[ short bunch
[0.8mA,1.7ps 75 1.8 mA, 15 ps

high current
long bunch
10 mA, 27 ps

1

0

50
chopper gap

200

chopper gap

slicing bunches

75x18mA 15ps [f 275 3TPE

250

350
bucket number

400

Figure 2.5: Intended fill pattern for BESSY VSR operation with short bunches

o

(blue) and long bunches (red).

Two chopper gaps are intro-

duced to enable photon beam separation. Overall beam current

is 300 mA.

high current high current

75x1.65mA, 15ps 75x0.18 mA, 1.1 ps

50
chopper gap

200

chopper gap

slicing
short bunch long bunch bunches
0.8 mA, 1.7 ps 10 mA, 27 ps 3x5mA, 3.7 ps

75% 1.85mA, 15 ps |f|75 < 0.18 mA, 1.1 pg

250 350 400

bucket number

Figure 2.6: Possible fill pattern for BESSY VSR operation with short bunches
(blue) and long bunches (red). Trains of short bunches are added
to relax beam lifetime and to supply THz power as well as high
repetition rate short x-ray pulses. Overall beam current is 300 mA.
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